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1. SUMMARY

This report presents a numerical method for the analysis of wing-body

combinations, and for the design of optimum wing camber surfaces in the pres-

ence of a body. The method is based on the linearized theory of supersonic

flow. The wing and body are represented by a large number of singularities

located in the plane of the wing, on the surface of the body, and along the body

axis. The velocity components induced by these singularities at selected con-

trol points define a matrix of aerodynamic influence coefficients. The aero-

dynamic matrix is used to calculate the pressure distribution onthe wing and

body for given boundary conditions, or to determine the wing camber surface

corresponding to a given aerodynamic loading. Also, the wing camber surface

required to minimize the drag of the wing-body combination under given con-

straints of lift and pitching moment may be determined by additional operations

on the aerodynamic matrix.

The method has been programmed for a digital computer. A special effort

has been made to minimize the number of geometrical inputs required in the

program by including a geometry definition section and a geometry paneling

section as integral parts. A description of the program, including a flow chart

and the input formats required for specific problems, is included in the report.

Application of the method to a wide variety of examples has shown good

correlation with both theory and experiment. In particular, detailed pressure

and force comparisons are made on a wind-tunnel model tested at Mach 1.8.

The program also is used to predict the drag reduction that might be achieved

by optimizing the wing camber surface on this model.
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2. INTRODUCTION

Several methods are currently available {references 1 through 4) for cal-

culating the camber surface of minimum drag for an isolated wing at a given

lift coefficient in supersonic flow. However, none of these allows for the effect

that a wing-mounted body may have in modifying the optimum wing camber sur-

face. A new method, based on the linearized theory of supersonic flow is pre-

sented for calculating the optimum camber surface of a wing in the presence of

a body. In this method, the boundary condition of tangential flow is satisfied

simultaneously on both wing and body, eliminating any iteration procedures

formerly required in solving problems of this type. The solution to this prob-

lem has important applications in the design of supersonic aircraft.

The primary objective of this study has been to develop a method of opti-

mizing camber surfaces for a wing in the presence of a body. However, because

of its formulation in terms of aerodynamic influence coefficients, the method is

sufficiently general to solve a wide variety of equally important problems in

supersonic flow. For example, it may be used to determine the pressures and

forces acting on wing-body configurations of given shape or to design a wing

having a given pressure distribution in the presence of a body. The effect of

wing thickness in modifying surface pressures may also be included. In addition,

the surface pressures and forces on isolated wings or bodies may be calculated.

The bodies may have regular or irregular cross sections, camber, and inci-

dence. In all of these problems, the accuracy of the results ultimately depends

on the number of boundary points at which the flow equations are satisfied.

The aerodynamic methods described in this report are considered to be

significant contributions to the linearized theory of supersonic flow. Although

a similar approach has been presented recently by H. Carlson and W. Middleton

of the NASA Langley Research Center {reference 5 ), their theory was re-

stricted entirely to the analysis of isolated planar wings. In particular, the

development of the nonplanar, constant-pressure solution to the linearized

wave equation and its application to the analysis of supersonic wing-body inter-

ference problems are considered of additional significance_



This report (Part I) describes the details of the aero(lynamic theory under-

lying the conlputcr program, showsthe agreement I)etweenthe results and

other theories, validates the method by comparison with experimental data,

andpresents a sample easeof designoptimization. It is also self-sufficient

for gxlidingthe reader in program usage. The secondhalf of this report (Part

II, reference 6) provides the details necessary for understandingthe digital

computer program. Subroutinedescriptions, several sample problems, and a
program listing provide the bull( of Part II.

The other report is Boeing Document D6-10740 (reference 7), Summary

Description of l_iethod of Optimizing Camber Surfaces for Wing-Body Combina-

tions at Supersonic Speeds. It is a brief summary intended to introduce the

scope of the work performed and put the results into context.

l_Iueh credit is due Dr. 'rse Sun Chow, a mathematics research specialist

at Boeing, for the integration and checking of the many functions used in the

vortex singularity representation of the method. The aerodynamic work was

accomplished by members of the Aerodynamics Research Unit, while the pro-

gramming and checkout was accomplished by members of the Technical Support

Section, all members of The Boeing Company Airplane Group.



3. LIST OF SYMBOLS

a()
a

[a]

A()
A

b()
b

[B]

c()
C

C

D

D()
F

F()
J

k

K

L

L

m

M

M

n

n( )
N

P

P()

P( )
q

r

r

R

Aerodynamic i_ffluence coefficienL

P:mel inclination

MatrLx of aerodynamic.: influence coefficients

Pm_el area

Aspect ratio

Normalized panel edge slope

Wingspan

Matrix of velocity components

Normal velocity component

Wing chord

Aerodynamic coefficient

Pressure drag

Downwash function

Normal force

Auxiliary function

Number of circumferential points on body

Line source stren_h

Number of line singularities in body

Lift

Body length

Panel edge slop(;

Maeh number

Pitching moment

Unit normal vector

Normal velocity component

Number of panels

Pressure

Strengths of vortex singularitie,_

Pressure function

Dynami c pressure

Radial distance

Body radius

Fraction of panel eLord defining control point location



s()

S

T

u

U

v

w

x, y,z

X,Y,Z

Greek

()

7

A

e

e

X

A

v

?/

0

a

T

S_dewash function

Surface area

Strengfl_ of line singularities

Nondimensional perturbation velocity in x direction

Free-stream velocity

Nondimensional perturbation velocity in y direction

Nondimensional perturbation velocity in z direction

Transformed axis system

Definition axis system

Angle of attack

Panel inclination(see p. 42)

_/M 2 - 1

Ratio of specific heats for air (1.40)

Difference (e.g., _p, A e)

Angular coordinate

Panel inclination(see p. 42)

Lagrange multiplier

Leading-edge slope

Conormal vector

3.14159

Density of air

Volterra's function

Domain of dependence

Velocity potential

Integrationvariables in Cartesian system

Arbitrary potentialfunction

d

Subscripts

a

A

B

e

CP

D

Axial component

Referred to body coordinate system

Body

Cross component

Center of pressure

Referred to definition coordinate system



D Doublet

D Drag
F Fin

i Influencedpanel number

j Iaflaenci,_gpatrol number

k Line singularity number
k Corner point number
L Lift

L Lower surface

M Moment

p Pressure
r Radial component

R Reduced

R Wing root
S Source

T Thickness (wing)

U Upper surface
V Vortex

W Wing

x, y, z Referred to Cartesian coordinates

x, y, z Partial derivative
0 Tangential component

Free stream condition

Superscripts

! Referred to primed system of coordinates

I I Referred to double primed system of coordinates

-- Fixed point o r value

7
(8 BLANK)





4. AERODYNAMIC TIII,'OF_Y

4.1 Description of Method

The method of aerodynamic influence coefficients is used to calculate the

pressures, forces, and moments on arbitrary wing-body combinations at super-

sonic speeds, and to predict the optimum camber surface of the wing in the

presence of the body. In this method, the wing and body are represented by a

large number of singularities located in the plane of the wing, on the surface of

the body, and along the body axis. It is assumed that the flow perturbations due

to this system of singularities are sufficiently small that the equations governing

the flow can be linearized without introducing significant errors into the analysis.

The three components of velocity induced by each elementary singularity are

calculated at specified surface control points. In particular, the velocity com-

ponent that is both normal to the body axis, and in a plane which is parallel to

the body axis and perpendicular to the surface through each control point is

required. The magnitude of this normal velocity component induced at control
.th

point i by the j singularity of unit strength is referred to as the aerodynamic

influence coefficient a... Thus the resultant normal velocity at point i is given
D

by the sum of the products of the aerodynamic influence coefficients with their

respective singularity strengths.

This resultant normal component of velocity is used to satisfy the surface

slope boundary conditions at each control point, and the resulting system of

linear equations is solved for the unknown singularity strengths. The matrix

of the coefficients of this system of equations is known as the matrix of aero-

dynamic influence coefficients, or aerodynamic matrix, and plays an important

part in the following analysis.

In actual practice, the singularity strengths required to satisfy the given

boundary conditions are not solved in a single step. The boundary conditions

corresponding to wing thickness, body thickness, and body camber and incidence

are separated, and the strengths of the specific singularities used to satisfy

them are determined independently. In the final stage of the calculation, these

9



separate solutions are combinedby linear superposition, and any residual inter-

ference effects are satisfied, together with the wing camber and incidence bound-

ary conditions, by surface distributions of singularities on the wing andbody.

In order to expedite the calculation of the aerodynamic influence coefficients,

the wing andbody are subdivided into a large number of small panels, as illus-

trated in figure 1. Eachpanel hasone or more singularities associatedwith it,

dependingon the way the panel boundary conditions are specified. For example,

the wing is represented by a maximum of 100panels located in the wing refer-

enceplane. Two types of singularities are specified for eachpanel. First, a

surface distribution of vorticity corresponding to a unit pressure difference

across the panel is used to simulate the lifting effects of camber, twist, and

incidence; and secondly, a surface distribution of sources is used to simulate

the effect of wing thickness. It will be shownlater how the boundary conditions

on the surface of the wing canbe completely satisfied by these two independent

types of singularities.

The effects of body thickness, or camber andincidence are represented

by a maximum of 50 line sources anddoubletsdistributed along the body refer-

ence axis. In addition, the surface of the body is subdivided into a maximum of

100panels, located in the region of influence of the wing-body intersection.

Thesebody panels simulate surface distributions of vorticity similar to those

used on the wing, and are used to cancel the interference effects of the wing on

the body in this region. The boundaryconditions on the body, as on the wing,

are specified so that they exactly match the number of singularities used to

represent the flow.

The location, and geometric orientation of eachelementary singularity is

now defined. It remains to calculate the u, v, andw componentsof velocity

induced at eachof the specified control points dueto a unit strength of the sin-

gularity under consideration. Formulae for these three perturbation velocity

componentsare given in the text for eachof the four independenttypes of singu-

larities used in this report. In particular, the aerodynamic influence coefficients

associatedwith each elementary singularity may be calculated from a combination

l0



/

\ ,/

\

11



of the v and w components of velocity, with due consideration being taken of the

relative orientations of the panels involved.

Once the aerodynamic matrix has been formed and solved for the unknown

singularity strengths, the surface pressures, forc,,s, and moments acting on

the wing-body combination can be calculated.

If the shape of the wing camber surface that will 5aeld the minimum drag for

the wing-body combination under specified conditions of lift and pitching moment

is desired, a slightly different method is used to solve for the strengths of the

singularities. In this case, an expression for the drag of the complete configu-

ration is derived in terms of the unknown singularity strengths. The values of

the singularity strengths which will give the smallest value of drag consistent

with the constraints imposed by the lift and pitching moment are determined by

application of the method of Lagrange multipliers to the system of equations so

formed. These values may then be used to calculate the optimum shape of the

camber surface, and the corresponding pressures, forces, and moments acting

on the configuration.

4.2 Calculation of Velocity Components --Surface Singularities

Derivation of the generalized potential function. --The linearized differential

equation for the velocity potential _ generated by a small perturbation of a steady

supersonic flow is given below, where fl = X/M2 - 1 and M is the free-stream

Mach number.

f12 _xx = _yy + _zz (1)

Differential equations of identical form also govern the behavior of the three

perturbation velocity components u, v, w in the flow. To extend the following

analysis to include the calculation of these velocity components in addition to the

potential, equation (1) will be rewritten in terms of an arbitrary variable _.

f12 _xx = _yy + _zz (2)

12



A general solution to equation (2) is given in reference 8, basedonVolterraTs

solution of the two dimensional wave equation. This result is repeatedbelow,

mid gives, in integral form, the value of _ at any point P due to a small per-

turbation of the flow originating ona surface S.

fl(x, y, z) = - 217 ax a----ff+ _-ff;Vt/(_dS

ffT _1 ___ (_'1 - ¢1') _-_ dS (3)+ 27r ax

The integrals are to be evaluated on the surface S throughout the "domain of

dependence", T, of point P(x, y, z). The unprimed variable _ denotes the value

of this variable on the same side of S as P, while the primed variable denotes

its value on the opposite side of S as P. _ is the particular solution of equation

(2) chosen by Volterra which vanishes, together with its derivative with respect

to the eonormal _, everywhere on the surface of the Mach foreeone from P.

The function (_ is given below:

ty = cosh -1 x - _ (4)

fl_/(y-r})2 + (z - _)2

It should be noted that _ is the indefiniteintegral of the fundamental solu-

tion of equation (2) representing a supersonic source in three dimensions.

The eonormal to a surface S is defined to be a vector, the three components

of which are related to the components of the normal vector n to the surface as

follows:

= _ /32V 1 nl, v 2 = n2, 123 = n 3 (5)

v' is defined to be a vector having the opposite direction to lJ on S.

In the following analysis, the surface S is chosen to lie in an inclined plane

passing through the y axis. The equation of this plane is _ = a_. The sketch

on the following page illustrates the conormal associated with this plane. Note

that the eonormal to the Mach wave originating from the leading edge of the

surface S lies in the plane of that Mach wave.

13



MACH WAVE

In this example

Now

Therefore

av
- v _a #_ _ _ f12 aa aa

i _- + V3 a_ nl _- + n3 _-

nI = - sin (_ = -
a

_1+ a2

1
n 3 = cos (_ -

_]i + a2

#{y f12 a ${_ 1 #0
-- +

(x - g) (z- _)
-_2a+

(y _ _)2 + (z - _)2

_/1 + a 2 _/(x - {)2 _ B2(y _ _)2 _ B2(z

(6)

_ _)2

(7)
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Note also that an elementary area d8 in the plane may be written

dS = (I{ d?1/cos (_

a2 dgd?1 (s)

Consider now a semi-infinite triang_tlar region in the plane ¢ =: a¢, such

that the leading edge of the triangle has the projection 71 - m ¢ in the ¢, r7 plane,

while the side edge lies in the {, _ plane. The domain of dependence _" of the

integrals in equation (3) is then the area on this oblique triangular region lying

upstream of its intersection with the Mach forecone from P, OQR in figure 2.

The equation of the curve QR is determined by substituting ¢ = a { in the equation

for the Mach forecone from P:

(x - ¢)2 = _2(y _ 71)2+ /32(z _ a¢)2 (9)

Thus, for a given B, the points S and T on an elementary strip of width d?1 on

the surface have the coordinates S({ 1, 71, a¢ 1) and T({ 2, B, a¢ 2)

where ¢1 = r}/m

and _2 - _ (x 2 - _2(y _ 71)2_ 82 z 2)
i - (x a z) 2

and the point Q has the coordinates Q(?13/m, 713, a 773/m)

m(x - fl2(my + az))
where 713

1 _2(a2 + m 2) V
Equation (3) may now be written:

_1 + a 2 a f'_3
_(x,

,z) - - 2 77 Sx J0 d?1
Y

(10)

4 (1- /g2(a2+ m2)_x 2- f12(y2+ 12))_
- (X- /_2(my + az)) 2 ;

(11)

i (7_- + an"_7u'l
cosh_ 1 x - ¢ d¢

_J(y_ 71)2 _ (z -a¢)2

__ D w

1 a

2y ax
(_ - fl,)

(x-F,)(z- a_ )

(y _ _)2 _ {z -a¢)2

_(x - {)2 _ /]2(y _ 71)2 _ _2(z _ a¢)2

de

(12)

15
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SECTOROF MACH
FORECONEFROM P

MACH CONE
FROMORIGIN

a tan c_
m cot A

Q
I

ELEMENTARY STRIP

IN REGIONOF

INTEGRATION

Pfx,y,z)

SURFACE LEADING EDGE
(IN PLANE y= mx )

OBLIQUE SURFACE
(IN PLANE z=ax)

I
SURFACESIDE EDGE

(IN x-z PLANE)

/

/

_'1 = vl/m

x-/92 a z

_'2 = 1_-_2a 2

t/3=

I _' 1 1-/92a2 _/92 )2_/92 z2 11- - (x_/92az) 2 (x2 I:y-_ )

m/x-_2my-,2az)[1_/92/a 2 +m2 ) 1- __ E1-/921a2_m2_[x2-'/92(# 2' z2_
(x-/92 my _/92 a z )z

FIGURE 2 GEOMETRICALORIENTATION OF INCLINED SINGULARITY SURFACE
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The intcgTals in equation (12) may now be evaluate(I, provided the expres-

sions (_l - t'l') and (_gl/$v + Sgl'/ap') are prescribed on S. It is most con-

venient to set them equal to a constant, or zero. Two choices of fl will now be

described which will satisfy these conditions, and yield expressions for the

potential function representing either a surface distribution of sources in the

, _ plane, or a constant pressure jump across a lifting surface corresponding

to a constant distribution of vortieity in the plane _ ,, a _ .

Potential function for surface distribution of sources. --In equation (12),

_1 is set equal to the perturbation velocity potential ¢0 on the upper surface of S.

The partial derivative ac_/#y then represents the velocity component in the direc-

tion of the eonormal to the upper surface of S. Similarly, #_'/#W' represents

the velocity component of the lower surface potential function (0' in the direction

of the eonormal to the lower surface of S.

Now

= i __#2 a
aU _+ a2 a¢ ,_ + a2 a{

112 a 1
-- U +

,v/1 + a 2 'q_ + a 2

Sire ilarly

a___'_ _ 112 a u' i

#V' _ + a2 %/1 + a2

w (13)

w' (14)

The sketch on the following page illustratesthe geometrical orientation of

these velocity components.

It can be seen that if c0' has the same sign as ¢0, a discontinuityin the U

component of velocity will appear in the flow on the surface { = a { which in turn

implies surface discontinuitiesin the u and w velocity components. In fact, if

_' = ¢_, then u' =-u, w' - w on the surface.

17



THECONORMALV AND
ALL VELOCITYCOMPONENTS
LIE IN_,_ PLANE

The second term in equation (12) then vanishes, and

- (w + 8 2 au) (15)
aV ay' _]_ + a2

where the bars denote the values of the velocity components on the surface.

If the quantity (w + _2 a u) is constant, it can be taken outside the integral.

If, in addition, the partial derivative of o with respect to x is taken through the

double integral, which is a legitimate operation in this case, equation (12)

reduces to

f0_73 __2 d_
_(x, y z) = - w + _2 au dr}

' 7r _ )21 _(x - _)2 _ B2(y _ r/)2 _ _2(z a

(16)

For the special case a = 0, this expression reverts to the usual integral

form for the potentialdue to a surface distributionof sources in the _, _ plane.

The integral willbe evaluated in its most general form, however, as the resulting

18



functi(ms will I_, us('_l lah,r in the (lerivati(m ()1 Lhc In)t(,,ntktl (hie to '.t c.onsL;mt

presstn'e (liffcrcnce across Lhc surface S.

Applying tile integration formulae apt)eat'ing in AI)l)cn[lix A, and siml)lil'ying,

the following rcsulL is ol)t:tined, for Lhc case /_ _/ " "_a- _ m- <1 (subsonic

leading edge) :

-- _fr/;3_(.,,.v,_) w_ /3zau co_h_ 1 . (1-/3z:V),7-m(×-_ea_) dr/
_J_ _ _ea2 "0 /3m4(1 -/3 2 a 2) (rl - y)2 + (z -ax) z

{_ w _ f12 au z -ax tan_ 1

rr 1 - _'2 a'2

+ (1 -f12 ae) y_m(x_/3 2az)

(1 - _2 a2) _/1 - B2(a2 + m 2)

m(z - ax) _/x2 - f_2(y2 _ z2)

y[(y - rex) - _2 a(ay - mz)] + (z - ax) 2

c;o sh -1 x - _32(my + az)

B_/(y - rex) 2 + (z -ax) 2 - f_2(ay - mz) 2

y cosh_ 1 x

'/1 - f_2 a2 _4y2 _ z 2
(17)

"2 2,.
I1" _ V a + m - 1 (sonic or supersonic leading edge), the inverse hyperbolic

cosine is replaced by the inverse cosine (see equation 40).

The perturbation velocity components may now be obtained by differentiation.

=- _ -- a tan- 1

u ax rr (1 2 2 a 2) 1
m(_ -a×)4'x_ -_2(y__ _)

y[(y-m._)-t_2 a(ay-m_)]_ (_-ax)2

m
+ eosh -1

'_1 - f32(a e + m 2)

x - fl2(my + az) I

B X/(y - rex) 2 _ (z - ax) 2 - Be(ay - mz) 2

V
= -(w + f12 a u) t 1 cosh_l x (18)

a y 7r (%/1 - /32 a 2 f] %/y2 + z 2

_ x fl2(my' _ :tz)
1 cosh_ 1 , -

4l - f_Z(a2 -_ m e) B"' (Y - rex) 2 + (z - ax) 2 - B2(ay - mz) 2 J

- 19



W :-
a__ (_+ __) tan-1
az _(1 - _2 a2)

m(z - ax) 4x 2 - _2{y2 + z 2)

y[(y - mx) -/3 2 a(ay - mz)] + (z - ax) 2

+ _2 a m cosh-1 x - fl2(my + az) _ (18)

x/1 - _2(a2 + m 2) f3_/(y - rex) 2 + (z - ax) 2 - f_2(ay - mz) 2 )

It should be noted that _ = xu + yv + zw. (19)

The results may be quickly verified by evaluating u and w on the surface

Z = ax.

Noting that

tan- 1
m (z - ax) 4x 2 - _ 2 (y2 + z 2)

y[(y - mx) - _2a(ay - mz)] + (z - ax) 2

= ff

= 0

Then, for 0 < y < mx

(_+ p2au) {U = a?7+

?r(l- _2 a2)

for z = ax, and 0 < y < mx

for z = ax, and y < 0, y > mx

(20)

m cosh_ 1

_1 -_2(a2+ m 2)

x(1-fl2a 2) _ f12 my

e41 _2 a2 IY mxl

-- { fl2am
w : (_ + f12 a_t) ?r + cosh -I

rr(1- _2 a2) X/1 - _2(a2 + m 2)

x(1 - fl2a 2) _ f12 my

_41 _2 a2 ly mxl

Therefore w + /32 au = (w + f12 au) (1 - f]2 a 2) _r (21)
(1 - /32 a 2)

Thus the resulting flow satisfies the imposed boundary conditions on the semi-

infinite triangular surface illustrated in figure 2. Off this surface, in the plane

z = ax, the quantity (w + fl2au) = 0.

2O



Two si)eeial cases of these results deserve attention, as they will be used

later in tile numerical analysis. In the first, for a = 0, the velocity components

due to a surface distribution of sources in the x, y plane are simply obtained

from equations (18):

w[ x m, ]Ul = - _m cosh -I -

17 _/1 - _2 m 2 f_%/(mx-y)2 + (1 - f_2m 2) z2

I___m){ x - _2 my
1//m cosh_ 1 cosh-i

Vl = _]1 - f]2 m 2 _%/(mx- y)2 + (1 - _2m 2) z2

(22)

In the second special case, the velocity components due to a line source along

the x axis will be derived. The term m w/_r is taken as a constant (for m ---.- o)

in the equations for the velocity components given by equation (22), and the limit

of the resulting expressions evaluated as m approaches zero. The result is given

below:

u 2 = - k cosh -1 x
+

ky _/x 2 _ _2(y2 z 2)v 2 - +
_y2 + z 2

k z _/x2 2(y2w 2 - _ f] + z2)
y2 + z2

(23)

m

mw
where k = lim - constant.

77
m --'-0

These velocity components will be used later to represent the flow surround-

ing a circular cone at zero incidence centered on the x axis. The potential

function corresponding to this flow is:

21



{ }¢_2 = k x cosh -1 x _ _/x2 _ f12(y2 + z2) (24)

8 /y2 + z2

Potential function for constant pressure surface. --In equation (12), t_ is

set equal to the perturbation velocity u on the upper surface of S. The desired

solution will have a constant discontinuity in u everywhere on S, that is Au = u

- u' = constant. Before introducing this condition into equation {12), the de-

rivative of u and u' with respect to the conormal is investigated. Following the

same procedure used in deriving equation (6),

a u _ _2 a _u + 1 _u

au' __2 a _u' 1 _u'

+ a2 + a2

Summing these expressions, the following result is obtained

_u + $_' 1 8 2 a (u ') (u ') 0,
_ _Y' _1 4 a 2 _ - u + _ -u =

since (u - u') is constant on the surface S. Therefore the first term in equation

(12) vanishes, and the equation reduces to:

I f (x- {) (z -a{)
Au a ?}3d?7 j_2 - 82 a + (y _ ?7)2+ (z - a_) 2 d_

u(x, y, z) - 2?7 #x _/(x - _)2 _ 82(y _ ?})2 _ _2(z _ a_)2

(26)

Since u = a0/#x, an expression for the potentialfunction may be obtained by

integratingequation (26)with respect to x. Since the potentialis zero everywhere

ahead of the envelope of Mach cones defined by the leading edge of the surface S,

the constant of integrationis zero, and the potentialfunction, in integral form,

•becomes:
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_f'_:3 f_2 -82a_ (x- _)(z-a_)- i (y-,7)2, (z-a{)_

_(x, y, z) 4 _" _l_,]J 0 dr_ de
_1 _/(x - _)2 _ _2(y _ r/)2 _ 82(z _ a _)2

(27)

where Au has been replaced by -_p/2q . Ap is the pressure difference across

the lifting surface S, and q_o is the dynamic pressure _ p_ M2/2, where p_ is

the static pressure in the undisturbed flow. Equation (27) thus gives the potential

function corresponding to the oblique triangular region of constant lifting pressure

illustrated in figure 2.

Equation (27) breaks down naturally into two double integrals as follows:

' 4,7 \%]Jo _1 _/(x - _)2 _ 82(y _ n)2 _ 82(_ _ a _)2

i (x - _) (z - a_) d_

- _-_ d?_ y-_)2+ (z -a_) _/(x- _)2 -82(y -_) 2 -82(z -a_) 2

(28)

The integration with respect to _ is carried out first, making use of the inte-

gration formulae in Appendix A. It should also be noted that the first integral is

identical to that in equation (16) for the surface distribution of sources. After

some simplification, the following result is obtained:

$(x, y, z) = -fl2a (_p_f _3 1 cosh-i (l-f12a2)_-m(x-_2az) dr/

4 _" Ikq_olj 0 ,v/1 _ 82 a 2 8m_/(1_82a2)(_ _y)2+ (z -ax) 2

1

4_ra
__ osh_ 1 y - mx

8_/(a_ _ mz)2 + m2(r} _ y)2

cosh_ 1 (i - _2 a2) _ _ m(x - f]2 az) I
1

_/1 - 82 a 2 8re,v/(1 _ 82 a 2) (7) _ y)2 + (z - ax) 2j

d_
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and combining terms

-i I_)_o _3¢_ (x,y,z) - 4rta

- _/1 - f32a2 cosh -1

osh-i y - mx
_(a_ - mz) 2 + m2(r_ - y)2

(1 - _2 a2) ?7 _ m(x - f12az) ]

f_m%/(l _ f12 a2) (_ _ y)2 + (z - ax)2JI

dr) (29)

By repeated application of the integration formulae in Appendix A, the inte-

gration with respect to _ may be completed, after some lengthy computation,

giving the final result:

(_(x, y, z) =

Y

a 2 + m 2

x tan-I m(z -ax) x_f_-fl2(y2+ z2)

y_y-mx)-_2a(ay-mz_+ (z-ax) 2

A/1 - f]2(a2 + m 2) cosh -1 x - fl2(my + az)

f3('_--mx - y)2 + (ax - z)2 _ f32(ay _ mz)2

+ m tan-1 (ay- mz)_/x 2- f12(y2+ z2)

x(my+ az) -y2 _z 2

m tanh_l _2(y2 + z 2)X

1
+ --

a

-(a2+m2)_/1-f]2a2tanh-i _/(1-f12a2)(x2-_2(y2+z2-_llx- _2az

z ]m x - fl2(my + az)

a2+ m2 L'"%/1-_2(a2+m2)c°sh-lf_(mx-y)2+(ax-z) 2-f32(ay-mz) 2

+

_/x 2 fl 2 (y 2 +- m tanh -1 - z2)
X

1 (m 2 (ay - mz) _/x2 - _2(y2 + z2)+ - tan-1 .

a _ x(my+az) -y2 _z 2

- (a2 + m 2)tan-I
2 ") ÷m(z - ax) x2_-_- _"_ 2 z 2)

Y[(Y - mx) - f]2 a(ay - mz_ + (z - ax)

(30)
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This equation is valid only if _/a 2 _ m 2 < 1 (subsonic leading edge). If

9
_/a 2 + m- >_ 1 (sonic or supersonic edge) the inverse hyperbolic cosine is

replaced by the inverse cosine (see equation 40).

The velocity components may now be obtained by differentiating equation (30),

where u _-_ a__
-- , V - j W =

ax _y az

The evaluation of these derivatives is rather lenffthy; however, it can be

proved that u, v, w are merely the coefficients of x, y, z respectively in

the expression c0(x, y, z), given by equation (30). Thus

_(x, y, z) = xu ÷ yv + zw (31)

and u, v, w may be obtained from equation (30) by inspection (of. equations 18

and 19).

The results may be verified by evaluating u on the surface z = ax. Sub-

stituting equation (20) into the first term of equation (30), then,

u - -_tE= - P - P' for 0 < y < mx
4 q_ 4c1_

0 for y < 0, or y > rex.

Thus the horizontal component of velocity on the upper surface exactly equals

one quarter of the pressure difference between the lower and upper surfaces,

divided by q_. Since the horizontal component of velocity on the lower surface

u' is equal and opposite to if, the pressure coefficient on the lower surface must

also be equal and opposite to that on the upper. That is,

p
Cp - - - 2u

upper q_ (32)

p': - - :
CPlower Cl_

The velocity components will now be written out for the special ease a = 0,

in which the triangular region of constant pressure is located in the x, y plane.

%vo terms in each of the u and w veloeity component formulae require speeial

attention. The limits of these two terms as a goes to zero are written out below:
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m tanh_1 x_-- f12(y2 + z 2)x

- (a 2 + m 2) _/1 - _2 a 2 tanh-1 _/(1 ' f32 a2){x 2 - _2(y2 + z2_
x - _2 az

m2z

y2 + z 2
_x 2 _ _2(y2 + z 2) (33)

tan_l (ay - mz) _/x 2 - _2(y2 + z 2)

x(my + az) - (y2 + z 2)

- (a 2+ m 2) tan -1
m(z - ax) _/x2 - _2(y2 + z2)

_(y-rex) __2 a(ay - m_.)]

= _ m 2 y _/x2 _ f32(y 2 + z 2)

y2 + z 2

+ (z - ax)21

The velocity components for this special case (a = o) may now be written:

= _ _p tan_ 1 mz _/x 2 - _2(y2 + z 2)
u3 47r q¢_ y2 + z 2 _ mxy

_2 m 2 cosh-1

1
cosh-1 x | _ ___X_-

_y2+ z2J y2+ z 2

z _]x 2 _ _2(y2 + z 2)
y2 + z 2

x - _2 my

_/(mx-y)2+ (1 -_2m 2) z

_x 2__2(y2+ z 2)

(34)

(35)

This expression for w3, with z = 0, agrees with the downwash function

presented by other investigators for a triangular plate with uniform loading.

{See, for example, equation 32 of reference 8.)
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Classification of the velocity functions. -- It is apparent from the preceding

analysis that certain functions appear repeatedly in the equations for the perturba-

tion velocity components and potential functions, equations (18), (22), (23), (30),

and (35). These functions are listed below:

F1 = tan -1

F2=

_/1 - f32(a 2 + m 2)

m(z - ax) "_x2 - _2(y2 + z 2)

y_y-mx)-f32a(ay-mz)]+ (z-ax) 2

1 cosh_ 1 x - _2(my + az)

_](y - rex) 2 + (z - ax) 2 - _2(ay - mz) 2

F3 -- tan -1 (ay-mz) _/x 2 -f12(y2+ z 2)

x(my+ az) - (y2+z 2)

F4 = iF3 -(1 + a2/m 2) F1) (m/a)

_/x 2 _ _2(y2 + z 2)F5 = tann-1"
X

F6= _/1 - f]2 a 2 tanh-1 _/'(1 - f12 a 2) (x 2 _ f12(y2 + z2))

x - f_2 az

F7 : (F5 -(1 + a2/m 2) F6) (m/a) (36)

These functions may all be conveniently rewritten in terms of inverse cosines,

or inverse hyperbolic cosines, as follows:

F1 - z - ax cos_ 1
Iz - ax[

F2 =

y_y - rex) - f12 a(ay - mz_ + (z - ax) 2

_/_z-ax)2+,l-f]2a2)y2]_y-mx)2+ ,z-ax)2-f_2(ay-mz)2]

1 cosh_ 1 x - _2(my + az)

_/1 - _2(a2 + m 2) _/(y - rex) 2 + (z - ax) 2 - f_2(ay - mz) 2

F3 =

F4=

mz -ay -1 - x(my + az) + (y2 + z 2)
COS

Imz-ay] _/(y2+ z2)_y_mx)2+ (z_ax)2_ f]Z(ay_mz)2]

(F3- (1 + a2/m 2) F1) (m/a)

F5 = cosh -1 x

f_y2 + z 2
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x - _2 az
F6 = 41 - 8 2 a2 cosh -1

_]_/(z- ax)2 + (1 - _]2 a2)y2

F7 = (F5- (I+ a2/m 2) F6)(m'/a) (37)

If a = 0, the limiting forms of F4 and F7 must be used.

equations (33)and (34),

-m yF4-
y2 + z 2

-m Z
F7-

2 2
y + z

_]x2 _ _2(y2 + z2)

_/x 2 _ _2(y2 + z 2)

Referring to

(38)

The behavior of the functions F1 and F3 will now be examined. In the plane

of the singularity, z = ax, the function F1 jumps from the value of ?r, just above

the plane, to -Tr just below, for all points behind the leading edge. The function

is continuous and zero everywhere in this plane ahead of the leading edge and out-

board of the side edge. The function F3 similarly exhibits a discontinuity of 2 ?r

in the plane z = (a/m)y for 0 < y < rex, and is continuous and zero elsewhere

in this plane. Both functions are asymmetric above and below their respective

planes of discontinuity.

It should be recalled that the seven functions listed above were derived for a

triangular surface having a subsonic leading edge, that is, the leading edge is

swept back inside the Mach cone from the origin, and for which f32(a 2 + m 2) < 1.

In this case, it can easily be verified that all of the functions go to zero for

x -> _/y2 + z 2 , which includes all points on or outside of the Mach cone.

For the case in which the leading edge of the triangular surface touches, or

extends outside the Mach cone from the origin (sonic or supersonic leading edge),

all functions are unaltered for points inside the Mach cone from the origin,

except F2, which becomes:

_/x2 _ _2(y2 + z2)
F2 - for _2(a2 + m 2) = 1 (39)

x-By
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and

1 -1
F 2 = cos

'_f_2(a2 + m 2) - 1

x - _2(my + az)

fl'v/(y - mx) 2 + (z - ax) 2 - /_2(ay - mz) 2

for j_2(a2 + m 2) > 1 (40)

The functions also go to zero for points on or outside the Maeh cone from the

origin, except in the region inside the envelope of Mach cones from the super-

sonic leading edge where the functions either go to zero, or take on constant

values. The geometry is illustrated by the section at x = constant.

_

J
/

/
f F1 =0 _

z = ax

/ '

,z x

_r,,_ x- (mY+az)+lmz-aY]_'/_ 8 2(a2_2) -1

7 ,:mxJ _!

_ y x (m+av/_2(a2+m2,_l)

In this region, inside the envelope of Mach cones from the supersonic

leading edge,

F1 = rr for z >_ ax

= -y for z < ax

F2 =

_ff]2(a2 + m 2) - 1

(41)

(42)
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In addition, F4 and F7 are unchanged, and F5 and F6 are zero. Thus an

unsymmctric two-dimensional flow region is defined in which the velocity com-

ponents are constant,

The perturbation velocity components may now be expressed very simply in

terms of these new functions. For example

Planar source distribution (a = 0)

m

W
- m F2

Ul ?r

W
- (F2 - F5)vl ?r

W

w 1 - 17 F1 (44)

Line source located along x axis (a = 0, m = 0)

u 2 = - k F5

v 2 = k F4

w 2 = k F7

Oblique constant pressure lifting surface

u 3 = - _P F1
4?rq_

- 2 2 -_2(a2+ m2) F2 + m (F3+ F7
v3 417 q_a +m

W3_ -_p m [(1 )) 4]- 4rfq_ a 2+ m 2 - _2(a2+ m2 F2 - F5 + F

(45)

(46)
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Visualization of velocity components. -- The following figures depict the

three components of velocity corresponding to oblique, constant-pressure lifting

surfaces in supersonic flow. For the ease a = 0 where the pressure discontinu-

it3' is located in the x-y plane (figures 3 to 5), the velocity components are given

for triangular regions having subsonic, sonic, and supersonic leading edges.

The dominant effect of the vortex-like flow around the side edge of the triangles

is clearly visible, as is the narrow upwash field in the leading edge region of the

subsonic leading-edge wing.

For the nonplanar ease, a = 0.2, (figures 6 and 7), the velocity components

are given only for subsonic and supersonic leading-edges. The flow disturbance

is now seen to be centered about the plane z = ax, and is no longer symmetrical

about the x-y plane. An additional discontinuity occurs in the v and w velocity

components in the plane z = (a/m)y (the plane through the x axis that just

touches the leading edge), which corresponds to a sheet of vorticity being shed

aft of the leading edge. It should also be noted that, for the supersonic leading-

edge ease, the sidewash and downwash are no longer equal and opposite above

and below the plane of wing in the "two-dimensional region" forward of the Maeh

cone from the apex.

The velocity field in a plane perpendicular to the free-stream direction

located one unit behind the apex of a subsonic leading edge, constant-pressure

delta wing is presented in figure 8. The vortex sheet trailing from points along

the leading edge can be seen to generate a circulatory type of flow on the suction

side of the wing. This circulation above the wing may be comparable to the

"ram's horn" vortex observed experimentally above the upper surface of highly

swept deIta wings.
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4.3 Calculation of Velocity Components -- Line Singularities

Derivation of potential equation. --Equation (1) may be rewritten in terms of

the cylindrical coordinates x,

f_2 ixx

r, and 0 as follows:

= irr + _ar/r + _°00/r2 (47)

To solve this equation, the perturbed flow will be resolved into two components:

the axial component, defined by the axially symmetrical potential ia; and the cross

component, defined by the potential _c"

¢_ = _a

Then, for the axially symmetric flow,

8 2 _ax X

and for the cross flow,

8 2 _cx x

Place

+ $c (48)

= iarr + _ar/r (49)

= ier r + _cr/r + $c00/r 2 (50)

The potential functions for the axially symmetric flow and the cross flow will be

determined separately.

Potential function and velocity components for line sources. --The solution

to equation (49) is well known, and is given in reference 9 as follows:

fO _I f(_) d_
_a(X, r) = - _/(x - _)2 _ f32 r 2

(51)

where _1 = x - _ r, is the intersection of the Mach fore cone from P(x, r) with

the x axis.

For the case f(_) = k s = constant, equation (51) represents the potential due

to a line source of constant strength distributed along the positive x axis. The

srdLltion of equation (51) for this case is given as:

x cosh -1 x )- -- + _/x 2 - 8 2r 2 (52)
_a = k s flr

It should be recalled that this same expression was derived earlier by taking the

limit of the generalized potential function for a surface distribution of sources

(equation 24).
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The velocity components corresponding to the constant line source may I)e

obtained by differentiating the potential function and are listed below:

_a x

Ua - lx - - ks c°sh-1 B r

_a _ k S _/x2 _ _2 r 2
Vra - ar r

v 1 $¢_a

O a - r _0 - 0 (53)

The velocity components in the Cartesian coordinate system are given by equa-

tion (23).

Potential function and velocity components for line doublets. --The solution

to equation (50) is also given in reference 9 :

cos 0 1"|_1 m(_) Ix - _) d{
_e(X, r e) J0 (54)

' r _/(x - _)2 _ 82 r2

For the case m({) = k D = constant, equation (54) represents the potential result-

ing from a line doublet of constant strength distributed along the positive x axis.

The solution of equation (54)for this case yields:

_c = -k D r cos 0 osh_ 1 x _ x x! - 1 (55)
2 _r _r V_2r2

The velocity components corresponding to this case may also be obtained by dif-

ferentiation. The results are listed below:

_¢_c ¢_ x 2Uc - _x -kD _ cos 0 2;2 1

aS c
v _ - -kr c ar D

1 a{_e
V

e c r ae

  cosO( osh_ x¢ )2 Br _-r 2;2 - 1

_ _ kD cos e osh_ 1 x x - (56)2 Cr _r 2 2
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4.4 Formation of the Aerodynamic Matrix

Geometrical considerations. --Some description of the geometry of the

wing-body combination is deferred until section 5. In this section, only sufficient

geometrical description will be given to continue the development of the aerody-

namic theory.

Briefly, the wing and body geometry is specified with respect to an arbi-

trary coordinate system, or "defining axes" X, Y, Z, as illustrated in the

following sketch. The defining axes may be inclined at an angle of attack _ D to

the free stream.

1 z t zA FWING REFERENCEPLANE

X

X

The body is restricted to have circular, or nearly circular, cross sections,

but may have arbitrary camber and incidence. The wing may have any planform

that can be approximated by straight-line segments, and can be mounted at any

height above or below the body axis. The effect of dihedral is not included. The

wing sections may have arbitrary camber, twist, incidence, and thickness

distributions.
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The 'q)otlyaxesv' x, y, z are establislm<lby tim' g(_(>m(,'trydefinition IJr()_4ram

so tlmt the x axis passesthrougiathe centroids of tl_; I_(_(ly (.rc_ss sections at th(_

nose mid base, while the y axis remains parallel to tim Y axis. The body coor-

dinate system is therefore related to the defining :Lxes 1)y a simple transfornmti(m

involving a translation ()f the I)()(ly in the X-Z l)lan(', h)ll()w(_(I by a rotation ab,_tlt

the Y axis through the mlgle a,A. For many configurati_ms, the wing and body

can be specified most siml)ly in terms of the body ax(,s _lirectly.

Referring to the sketch, it can be seen that in general the x-y plane will be

inclined at an angle _ _I) - _A with respect to tim free stream. The coral)O-

neat of the free-stream velocity parallel to the x axis is U cos _, an(l the corn-
ca-)

ponent parallel to the z axis is Uoo sin _. In the following analysis, it will be

assumed that _ is sufficiently small so that cos _ _: l, and sin _ _ 0_. There-

fore, for all practical purposes the ,axial component of the free-stream velocity

maybe set equal to the free-stream velocity U, whih, the, ur_)ss c_)ml)nn(,nt ,

which represents the additional effects of an angle of attack, is set equal to U _.

This approximation is consistent with the underlying assumptions of linear theory,

and introduces considerable simplification into the analysis.

The transformed body is now approximated by an equivalent body of revolu-

tion about the x axis. Each section of the equivalent body has the same cross-

sectional area as the original body, while the body camber is defined by the heights

of the centroids of the original sections above the x axis. The transformed wing

is defined to lie in a plane parallel to the x-y plan('., located at an average height

zA above or below that plane. The line of intersection of this planar wing and the

transformed body is calculated within the program.

Finally, the surfaces of the transformed wing and body arc subdivided into a

large number of rectilinear panels. The leading and l,rltilinl4 edges ,)[ these panc, ls

may be swept forward or back in an arbitrary way, but the side edges must be

constrained to lie in planes parallel to the x axis. To meet this latter require-

ment, each panel may be further subdivided into two or three parts, to be de-

scribed later. The panels are defined by the x, y, z coordinates of the fore;
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corner points. A tYt)ical panelarrangement on a wing-I>o(lycomt)ination is illus-

trated in fi[4_are1 (i)age 11).

A l)rimed system of coordinates is now introduce(I, originating at a sl)ecified

corner point k of panel j. The x' axis is defined to he i)arallel to the x axis,

while the y' axis is defined to lie in the planeof the I)anelas in fixture 1. It can

be seenthat, ill general, the x'-y' plane is inclined at anangle Oj to the x-y

plane. It shouldbe notedthat the panel may also be inclined to an angle _ j =
dz'/dx' with respect to the x'-y' plane, as illustrate(I in the following sketch.

I
×

The panel corner point-numbering convention is shown on the sketch. The

leading edge lies between points 1 and 2, and the trailing edge between points 3

and 4. The projection of the leading edge in the x'-y' plane has the slope mjl,

while the projection of the trailing edge in the x'-y' plane has the slope m j3.

Note that mjl = mj2 and mj3 = rn'j4. The side edge between points 1 and 3

always lies in the x'-z' plane, and the side edge between points 2 and 4 always

lies in a plane parallel to the x'-z' plane.

The coordinates of a point i (xi, Yi, zi) may be expressed in terms of the

primed system of coordinates originating at corner k of panel j as follows:
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xWijk x. - xjk

where

Y'ijk = (Yi - Yjk ) cos O.j + (z i - Zjk ) sin O.j

z'ij k = (z i - Zjk ) cos Oj - (Yi - Yjk ) sin 0j

Cj B]
- ; sin 0j -

cos 0j _/BJ 2 + CJ 2 _/BJ 2 + CJ 2

(57)

and Xjl zjl i Xjl Yjl 1

Bj = xj2 z j2 1 ; Cj = xj2 Yj2 1

xj3 z j3 1 xj3 Yj3 1

In general, the point i will be located at the control point of panel i. Note that

(-_ = 0 for all wing panels is a linearizing assumption.

Supert)osition of the velocity components for the surface singularities. --For-

mulae for the three velocity components u, v, w are given in section 4.2 for the

two types of surface singularities chosen: surface distributions of sources and

surface distributions of vortices. The velocity components are derived for the

elementary case in which the surface singularities are located on semi-infinite

triangular regions, and are expressed in terms of the coordinate system originat-

ing at the apex of this triangular region.

The velocity components induced by a distribution of singularities over a finite

panel may now be obtained by combining four such elementary solutions originating

at each of the four corner points of the panel, using the method of superposition.

The procedure is illustrated by the following sketch:

m

m

FINITE PANEL (REGION1- REGION2) (REGION3- REGION4)
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The effect of a semi-infinite strip of singularities having the same width as

the panel is obtained by subtracting the triangular region with origin at corner

point 2 from that originating at corner point 1. Both regions must have the same

leading-edge slope and constant singularity strengths. The singularity strength

everywhere outside this strip is now zero. If the semi-infinite strip correspond-

ing to the difference between the triangular regions originating at corner points

3 and 4 is now subtracted from the original strip, then it can be seen that the con-

stant singularity strength will be limited to the area enclosed by the panel and

will be zero elsewhere. It is not necessary for the second strip to have the same

leading-edge slope as the first, but it must have equal strength.

In the method of aerodynamic influence coefficients, all the singularity dis-

tributions are defined to have unit strengths; consequently, the superposition of

the velocity components corresponding to the elementary surface singularities

may proceed directly. For example, the velocity components at the control point
b

of panel i due to a distribution of singularities on panel j may be written as follows:

u'ij = qijl - qij2 - qij3 + qij4

v'ij = rijI - rij2 - rij3 + rij4

w'ij = cijI - cij2 - cij3 + cij4 (58)

where qijk = P(a'j, b'jk, _'ijk' Y'ijk' z'ijk)

rijk = _ S(a'j, b'jk, _'ijk, Y'ijk, z'ijk) (59)

cijk = _ D(a'j, b'jk, _'ijk, Y'ijk' z'ijk)

(zj3 - Zjl) cos 0j - (Yj3 - Yjl) sin ej
and a'j = _ tan _j = _ (60)

xj3 - Xjl

1 xj2 - Xjl

b'jk _ mjk _ (Yj2 - Yjl) cos 0j + (zj2 - Zjl ) sin 0j

(61)

xi4 - xj3

(Yj4 - Yj3) cos 0j + (zj4 - zj3 ) sin 0j

Also, _'ijk = x'ijk/_ where x'ijk, Y'ijk, and z'ij k are defined by

equation (57).
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The Junctions P, S, and 1) in equation (59) are written out in lull m Appendix

B for both types of surface singularities.

Calculation of the aerodynamic influence coefficients for surface singmlarities. --

The velocity component that is both normal to the body axis and in a plane which

is parallel to the body axis and perpendicular to each panel surface through its con-

trol point, is required. The magnitude of this normal velocity component induced

at control point i by the distribution of singularities of unit strength on panel j is

defined to be the aerodynamic influence coefficient aij. An expression for the aero-

dynamic influence coefficients may be derived by an examination of the projections

of the velocity components in a double-primed system of coordinates associated

with panel i, as illustrated in the following sketch:

CONTROLPOINT i __01_ irOj /.A z m w_7
Z

" \, Vg l _

/_INFLUENCED
PANEL i

zl #--INFLUENCING

\_e_ PANEL j '

Ztt
PANEL

I+ u"
x II

OBLIQUE VIEW A-A

y

Then aij =w"ij =w'ij cos (0 i - Oj) - v'ij sin (8 i - Oj)

The other two components of velocity may be written:

where u', v'

u"ij = U'ij

V".. = V'. (Oi @j}i] lj cos - + W'ij

, and w' are given by equation (58).

sin (e i - Oj)

(62)

(63)
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Additional subscripts are used to classify the aerodynamic influence coeffi-

cients according to the location of the control point i on the wing or body, the

location of the influencing panel j, and the type of singularity the panel contains ....

For example, the influence on wing panel i by a surface distribution of vorticity

on body panel j is denoted by aWBVi j, and the influence on body panel i by a __

surface distribution of sources on wing panel j is denoted by aBWSi j.

Certain special cases will now be considered so that the formulation of the

aerodynamic influence coefficients can be completed.

Multiple part panels: There are certain areas on the wing and body where

the panels cannot be represented by a single planar region in which both side edges

lie in planes parallel to, or coincident with, x'z' plane. These areas may occur

at wing tips, along wing-body intersections, and on the surfaces of opening or

closing bodies. In these areas, the panels must be further subdivided into two

or three parts, each part of which meets the side-edge requirement, as illus-

trated below. It should be noted that a triangular part is considered to have a

side edge of zero length.

PANELWITHOBLIQUE
SIDEEDGE

STREAMWISESIDEEDGE
OFZ

PART 1 PART2

BOTHPARTSHAVESTREAMWISESIDEEDGES

In case a multiple part panel is an influencing panel, the velocity components

induced by each of the parts at a given control point are calculated separately, and

the total contribution determined by adding these individual components together.

The influence coefficient is then formed from these velocity components as before.

If the influenced panel is a multiple part panel, the velocity components and
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influen('e coefficient al'c calculated at a single control I)oint r(_l)r(,'senting the com-

bined areas.

PilllOIs having negative slopes: Th(; fol'mlll;l(; f_)i" lh_, v(,,l()(.ity c()ml)On(,.nt._

h;lve 1)con presented only f(ir the case in which the seini-illfinite triangular l'cgJoli

containing the sing_llarities hlis a positive leading-edge slol)c (mjk >_ 0). These

formulae may be extended to the case in which the region has a negative leading-

edge slope by applying a slight variation in the superposition procedure used to

calculate the effect of a finite panel as sketched.

I ,X21

STRIP HAVING
NEGATIVE LEADING
EDGE SLOPE

2

m
B

2

1

SUPERPOSITIONOF TWO

REGIONSHAVING NEGATIVE
SLOPES

Y2f

X I _J //v_ w I 2

I

x2

SUPERPOSITIONOF TWO REGIONS
HAVING POSITIVE SLOPESIN
REVERSEDAXIS SYSTEM

The influence of a semi-infinite strip of constant pressure at a given point i

may be calculated by taking the difference of the influences of the two semi-infinite

triangular regions of negative slope having vertices at corners 1 and 2, as before.

However, this case is calculated in an equivalent manner by taking the differ-

ence between the influences of the two semi-infinite triangular regions having

positive leading-edge slopes as shown in the right part of the sketch, where

the order of subtraction and the direction of the y' axes from the corner points

must be reversed. The velocity components arc still given by the formulae of
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equation (5S),

Cijk:

wiih the' following mo(iffications to the terms qijk, rijk, and

__ _i :}:,t 1 i

qijk +P (a'j'Eb'jk' _" ijk' -y ijk' z ijk)

rij k fl S (a'j,_b'jk, _' _"' '= ijk' _ ijk' z ijk)

cij k = 4-f] D(a'j,_b'jk, _' _:"'ijk' y ijk, z'ijk)

where + is for mjk >_ 0

and - is for mjk < 0

(64)

Panel symmetry effects: For configurations having panels located symmetri-

cally on the right and left side of the x-_ plane, it is possible to introduce consid-

erable simplification into the computer program by calculating these symmetrical

panels in pairs. The formulae for the velocity components in the double primed

system of coordinates associated with panel i have })ceil given by equations (62)

and (63). If panel i has an image panel i associated with it, located on the oppo-

site side of the x.z plane, the velocity components in the double primed system

of this image panel may be written:

w"ij = w'ij cos (0 i + Oj) + v'ij sin (0 i + Oj)

_,". = w' sin + v'.. cos + (65)
lj ij (0 i Oj) - 1j (0 i 0j)

The sketch on the following page illustrates the geometrical relationship be-

tween the panel i and its image panel i, and the location of the influencing panel.

It can easily be seen that the velocity components for both cases can be

expressed by the single pair of formulae as follows:

WIT 4-
ij = w'ij cos (0 i + 0j)

v"ij = w'ij sin (O i ± Oj) :L

v'ij sin (0 i ± 0j)

v'ij cos (0 i ± Oj) (66)
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provided that the Y'ijk and z'ijk coordinates used in equations (59) or (64) are

replaced by

Y'ijk = ( ± Yi - Yjk ) cos Oj + (z i - Zjk ) sin Oj

z = - - ± Yi Yjk) sin Oj'ijk (zi Zjk) cos Oj (' -

where the upper sign is used for i and j on the same side of the x-y plane

and the lower sign is used for i and j on the opposite side of the x-y plane

(image panel i), in both of the above equations.

(67)

Y i

II

Z

IMAGEPANELi

PLANEOF REFLECTION
( x-z PLANE)

•_-- -Yi-Yj

PANELi

I

Z

INFLUENCING......

IPANELJ!

0

Yi-Yj

1

Y

II
Y

by

Calculation of the aerodynamic influence coefficients for line singularities. --

The line singularities used to represent the effects of the body thickness,

camber, and incidence are located along the positive x axis. The component of

velocity induced by these singularities which is normal to the x axis and in a

49



plane parallel to tltis axis ,and perpendicular to the surface at a control point

is required. The magnitude of this velocity component induced at control point

i by the k th singxflarity of unit strength is defined to be the aerodynamic in-

fluence coefficient aik. The following sketch illustrates the geometry for a

control point on the surface of the body and for a control point on an arbitrary

panel.

CONTROLPOINTON
BODYSURFACE

On the surface of the body,

measured from the X.oZ plane.

Z

ii

z y_

I

CONTROLPOINTONARBITRARY(WINGORBODY)PANEL

Oi is given by the angular position of point i,

On wing (or body) panels 0 i is given by the in-

clination of the x"-y" plane to the x-y plane as before.

On the surface of the body,

aik = Vri k (68)

On the surface of a panel,

aik = vrik

where

Yi
OA = tan -I

i ZAi

cos (Oi + OA) - Voi k sin(% + 0A) (69)

vrik

_ I(xi - Xk)2

= _.I--- --_- 1 for line sources, or
(/:1 ri)

= - 2 t c°sh- xi - xk
ri _ ri k_ (8 ri)2 for line] doublets,
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voik 0 for line sources, or (70)

2 c°sh-1 _ r i _ r i v (_ ri)2 for 1 doublets.

and r i = _/yi2 + zi2

xk = x coordinate of the origin of the k th line singularity.

The aerodynamic influence coefficients induced by the line singularities are

also classified by the use of subscripts in a manner similar to that used for the

surface singularities. For example, the influence on wing panel i by the kth line

source is denoted by aWBSik, and the influence on body control point i by the k th

line doublet is denoted by aBBDi k.

Resultant normal velocity at a control point. --The resultant normal velocity

at control point i may now be obtained by addition of the normal velocities due

to the local cross flow to those induced by the various singularities. The local

cross-flow velocity normal to the surface, nondimensionalized by the free-

stream velocity U_ , is _ cos 0 .. On the body, the local angle of attack is
1

assumed to be the difference between the angle of attack, _ , and the slope of

the body camber line.

The resultant normal velocity on body panel i may be expressed as follows:

nBi = - -_-x] cos 0 i + nBBSi + nBBDi + nBBVi + nBWVi + nBWSi (71)

K

where nBBSi = _ aBBSik Tk (due to body line sources)

K

nBBDi = _ aBBDikk=l TDk
(due to body line doublets)

NB

nBBVi = Z aBBVij
j=l PBj

(due to surface distribution of

vorticity on body)
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NW

nBWVi = Z aBWVij PWj
j=l

Nw

nBWSi = E aBWSij ffTj
j=l

(due to surface distribution of
vorticity on wing)

(due to surface distribution of

sources on wing)

As indicated above, the normal velocities induced by the various singularities

may be expressed as the sum of the products of the influence coefficients with

their respective singularity strengths. The influence coefficients have been de-

scribed previously, and the singularity strengths are defined below:

T k = strength of body line source k

TD k

PB.
]

W.

]

°tTj

: strength of body line doublet k

: pressure difference across body panel j

= pressure difference across wing panel j

: \ux//_-:/Z-__J j : thickness slope of wing panel j

For the summation limits above, there are K __ 50 line sources and doublets,

N B <_ 100 body panels, and NW _ 100 wing panels. The number of singularities

used may be chosen arbitrarily for each problem.

Likewise, the resultant normal velocity on wing panel i may be written:

nwi = _ + nWBSi + nWBDi + nWBVi

K

where nWBSi = Z aWBSik Tk
k=l

+ nWWVi + nwwsi (72)

(due to body line sources)

K

nWBDi : Z aWBDik TD i
k=l

NB

nWBVi = _ aWBVij PBj

(due to body line doublets)

(due to surface distribution of
vorticity on body)
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Nw

nwwvi = Z awwvij PWj
j=l

NW

nWWSi = j_=l aWWSij ffTj

(due to surface distribution of
vorticity on wing)

(due to surface distribution of

sources on wing)

Note that, by definition, 0 i = 0j = 0 on all wing panels.

Boundary conditions. --The boundary conditions equate the local flow direc-

tion to the slope of the surface at the control points, where the local flow direction

is defined as the ratio of the resultant normal velocity to the axial velocity. For

example, the boundary condition at control point i on the wing may be expressed:

= d(___) (73)nwi i

nB i

1 + UBi
(74)

and on the body,

The resultant normal velocities nBi and nwi are defined by equations (71)

and (72), respectively. The resultant axial velocity, expressed as a fraction of

the free-stream velocity, is assumed to be unity on the wing. On the body, how-

ever, it is customary to include the axial velocity perturbations due to the

line sources and doublets. Correspondingly

UBi = UBBSi + UBBDi (75)

All other axial velocity perturbations are assumed to be small and are neglected.

The boundary conditions may be used to determine the strengths of the vari-

ous singularities representing the wing-body combination. In this report, the

body geometry and wing thickness distribution and planform are always specified

in advance. The wing camber and twist distribution either may be given, or will

be determined by specifying the lifting pressure distribution or minimum drag

condition. As a result, the boundary conditions are most easily satisfied by

solving equations (73) and (74) in three steps.
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In the first step, the boundary conditions on the wing are divided into two

parts, one associated with the lifting effects, the other with the thickness effects.

The surface slope of the wing may be expressed as follows:

• (76)

where the upper sign refers to the upper surface, and the lower to the lower sur-

face. Substituting equations (76) and (72) into equation (73)

_-_x)i ± i = a + nWBSi + nWBDi + nWBVi + nWWVi + nwwsi (77)

Now nwwsi = j=l aWWSij \-d_x) j ± i

since awwsi j = ±1 for i = j

= 0 for i /j

Thus, it can be seen that the given slope of the thickness distribution at con-

trol point i, (dzT/dX)i, is in fact the desired strength of the surface source dis-

tribution on wing panel i, and satisfies exactly the wing thickness boundary

condition on both surfaces. Equation (77) may now be expressed in terms of the

slope of the wing camber surface alone, as follows:

dzc._ + + +-_-x) i = a + nWBS i nWBDi nWBVi nwwvi (79)

The various normal velocity components are written out in terms of the aerody-

namic influence coefficients following equation (72).

In the second step, the strengths of the line sources and doublets are deter-

mined that completely satisfy the given boundary conditions on the body, assuming

no interference effects from the wing. For this step, equation (74) is written as

follows:

d(_x)i(1 + uBBSi) + (d_-_x) = (o_ _._c)i UBBDi - cos 0i + nBBSi + nBBDi

+ nBBVi + nBWVi + nBWSi (SO)
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This equation is now broken downinto three parts so that the unknownsingularity

strengths, Tk and TDk , can be determined independently.

For the line sources,

dI_xx)i (1 + UBBSi) = nBBSi

For the line doublets,

UBBDi = nBBDi + - dx/ cos 0i

(81)

(82)

The remainder of equation (80) then expresses the condition that the resultant

normal velocity components on the body due to the wing must be canceled by the

distribution of vorticity on the body panels, that is,

nBBVi = - (nBWVi + nBWSi ) (83)

The various normal velocity components appearing in equations (80), (81),

(82), and (83) are written out in terms of the aerodynamic influence coefficients

following equation (71). The third step is to solve equations (83) and (79) simul-

taneously to yield the pressure differences across the wing and body panels that

satisfy the remaining boundary conditions on the wing, once the strengths of the

line sources and doublets on the axis are determined from equations (81) and (82).

Determination of line sources and doublets. --The strengths of the body line

sources may be determined from equation (81). Writing this equation out in terms

of the aerodynamic influence coefficients:

or

(dr/i (1 _ ) __xx + UBBSik Tk = aBBSik Tk
k=l k=I

k=l
(84)
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This equation is solved for the source strengths T k either by inverting the

matrix enclosed in the square brackets and multiplying the inverse by (dr/dx)i,

or by using the classical approach first proposed by von Karman and Moore

{reference 10). To conserve storage on the digital computer, the latter method

has been used in the computer program. The method is outlined below:

Xk= Xi_l-flri_ 1

The body, considered to be made up of a series of truncated cones, is

defined by the radius at K stations along its length.

(d_x) ri -ri-l_
i xi - xi-1

For the first segment,

At station i, the slope is

_xldr = aBBSll - _xx 1 UBBSll

yielding
TI=

For the second segment,

[a U  s2]= _ T 1
_xx BBS21 2 + IaBBS22 Id_12 UBBS221- T 2

]

(85)

Y
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 aBBs21I  uBBs211
So T 2 --

aBBS22 -Id_12 UBBS22

In general, for the ith segment

T 1

IBBsik<dr!ITk- - _x UBBSikk=l

Ti = _(dr)i (86)aBBSii _xx UBBSii

In this analysis, it should be noted that the k th line source has its origin at

the distance x k = Xk_ 1 - _ rk_ 1 from the nose of the body.

The aerodynamic influence coefficient, aBBSik, is given by equation (69).

The axial velocity component, UBBSik, is given below:

= _ xi - xk

UBBSi k cosh-I _ ri (87)

The strengths of the body doublets may be determined from equation (82),

since in terms of the aerodynamic influence coefficients,

(dr)i k_ 1 _ ( dZc__xx = UBBDik TDk = k=l aBBDik TDk + _ - -_--/i cos 0i
(88)

Now both UBBDi k and aBBDi k contain cos 0.1 internally (see equations (56) and

(69)); consequently, cos 8. is eliminated from equation (88)1

u' = UBBDik/COS e iby placing BBDik

and a,BBDi k = aBBDik/COS 0i

The result may be written as follows:

a' dr
a - _- = - BBDik - _x U'BBDi TDk

i k=l

Again, this equation can be solved for TDk by inverting the matrix inside

the square brackets and multiplying by the local angle of attack (_ - dZc/dx)i.

However, it is solved in a similar fashion to the source equation (84).

(89)
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Following the same procedure as before, the final result is obtained:

TD i

(_ ---_X-X] i Z a' _ dr U'+ BBDi k BBDik TD k
k=l

a' _ d(_) U'BBDii i BBDi i

(90)

Note that /dzc_ = Zci - Zci_ 1

\ •dx/i xi - xi_:

The aerodynamic influence coefficient, aBBDi k, is given in equation (69) (doublet

form). The axial velocity component, UBBDik, is given below:

./ (x! Xk__)2

UBBDi k = _ cos 8i V 1
B2 ri 2

(91)

Calculation of lift distribution on the wing. --As stated earlier, equations

(79) and (83) may now be solved for the magnitudes of the pressure differences

across the wing and body panels required to satisfy the remaining boundary con-

On the wing,

nWBVi + nWWVi =
dzc /

\_x/i - _ - nWBSi - nWBDi

ditions.

(92)

where the last two terms represent the normal velocity on the wing due to the

body line sources and doublets. To simplify the following analysis, these two

terms are combined as follows:

K K

nWB i = nWBSi + nWBDi = Z aWBSik Tk + Z aWBDik TD k
k=l k=l

On the body, NW

nBBVi + nBWVi = - nBWSi = - E aBWSij (_Tj

(93)

(94)

j=l

The last term represents the normal velocity on the body resulting from the wing

sources.

Equation (94)is the general expression for the normal velocity on the ith body

panel control point. There are NB <__i00 such equations. Similarly, equation
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(92) is the general expression for the normal velocity at the i th wing panel control

point, resulting in another NW <_ 100 equations. This combined system of NB +

N W equations is sufficient to determine the NB values of PBj, and the NW values

of PWj' For example, the equations may be written out as follows:

N B N W

j_l + j_l aBWVlj " PWjaBBVlj • PBj

N B N W

+

aBBV2J" PBj aBWV2j

= _ nBWSl

= _ nBWS2

N B Nw

"j_l aBBVNBJ'PBJ + j_--1 aBWVNBJ 'PwJ = - nBWSNB

N B Nw

j_l + j_l (dze_ - (_ - nWB1
•= aWBVlj " PBj "= aWWVlj " PWj : \-_-/1

j=l aWBV2j " PBj + j_--1 aWWV2j " PWj = \dx/2- o_ - nWB 2

NB Nj_1 =/dzc_ - O_"j_l aWBVNwJ'PBJ + "= aWWVNwj'PwJ \ d---_/N w - nWBN w
(95)

This system of equations is more simply expressed in matrix form as shown

on the next page.
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m

aBBVll aBBV12 • . . aBBV1NB

aBBV21 aBBV2 2 I

I
I
I
I

aBBVN B 1 A

aWBV 11

aWBV21

aWBVNw I - . .

aBWV2 PB 2

PBNB

I _ pw1
[ 11
l PW2
I
I
I

I p"

]I aWWVNwNd [WNw

- n

BWSNB

(96)

The matrix of aerodynamic influence coefficients is normally referred to as

the aerodynamic matrix. This matrix can be conveniently partitioned into four

parts, as indicated, one giving the influence of the body on the body [ABB ] , the

next giving the influence of the body on the wing [ AWB ] , the next giving the in-

fluence of the wing on the body [ ABW ] , and the last giving the influence of the

wing on the wing [Aww ]. In terms of these submatrices, equation (96)becomes

r }[ABB] [ABw] PB -nBWS

, = dz c

L[AwB] [Aww] PW -d-x-x - _ - nWB

(97)

This matrix equation may now be solved for {pB} and{

were a system of two linear algebraic equations, as indicated below:

Ij¢ ] as though it

= dx _ - nWB } (98)
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The first equation gives:

(99)

Substituting this into the second equation,

[[Aww] -[AwB [ABB]-I[ABw]]{Pw} ={[AwB] [ABB]-IInBWS}

+ { dzc } }dx - a - nWB "

which yields the lift distribution on the wing, provided the slope of the camber

surface and angle of attack are specified.

{Pw} = JAR]-1 [AwB] [ABB] {nBWS} + I dx o_- nWB } (100)

where CARl :[[Aww ] -IAwBI [ABB] -1 [ABw]I (101)

is referred to as the "reduced" aerodynamic matrix.

Thepressuredifferenceacrossthebodypanels, {pB}, maynowbedeter-

mined from equation (99). This completes the determination of all the singularity

strengths for a wing-body combination of given geometry.

4.5 Calculation of Pressures, Forces, and Moments

Pressure coefficients. --The pressure coefficients on the body resulting

from line sources and doublets are calculated separately from those on the wing

and body panels. The combined pressure coefficient on the body in the presence

of the wing is the sum of these two calculations.

The pressure coefficients on the body resulting from line sources and doublets

are calculated by the following formula:

PBi - P_ _2 2 2 2 (102)- - 2 + - -v
CpB i q_ UBi UB i vrBi 0B i

K K

where = E UBBSik Tk + Z UBBDik TD kUB i
k=l k=l

vrBi

K K

E Vr Tk+Zk=l BBSik = VrBBDik TDk
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V0Bi = _ V0BBSik Tk + _ vo TD k
k=l k=l BBDik

and
UBBSi k = _ cosh-1 xi - xkri

(x i - Xk)2
UBBDi k = f} cos 0i 82 ri 2

The remaining coefficients are defined by equation (70).

The pressure coefficients on the body panels resulting from surface distribu-

tions of singularities on the body and wing are given by:

UB i UB i B i WB iCpB i = - 2 + 82 2 _ v 2 _ 2 (103)

where = UBBVi + +UB i UBWVi UBWSi

UBBvi j=l UBBvij PBj

UBWVi j=l UBWVij PWj

NW

UBWSi = _ UBWSij (XTj

and VB i = VBBVi + VBWVi

NB

VBBVi = j--_l (VBBVij

NW

VBWVi = Z (VBWVij
j=l

NW

VBWSi = Z (VBWSij
j=l

+ VBWSi

cos 0j - WBBVi j sin 0j) PBj

cos 0j - WBWVi j sin 0j) PWj

cos 0. - WBWSi j sinJ 0j) eVTj

and WB i = WBBVi + WBWVi + WBWSi
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WBBVi=
j=l

NW

NB

E (WBBVij cos 0j + VBBVij sin 0j) PBj

WBwvi = E (WBwvij
j=l

WBWSi = j=l (WBWSij

cos 0j + VBWVi j sin 0j) PWj

cos 0j + VBWSi j sin 0j) _Tj

The various velocity coefficients are given by equation (58), selected accord-

ing to the type of singularity under consideration.

Finally, the pressure coefficients on the wing panels are calculated in a single

step by the use of the following formula:

= _ + 8 2uwi 2 vwi2 - wwi2Cpw i 2 Uwi
(104)

where Uwi = UWBSi + UWBDi + UWBVi + uWWVi + uwwsi

K

UWBSi = E UWBSik Tk
k=l

and
Vw i

UWBDi = _ UWBDik
k=l TDk

NB

UwBvi = _ UwBvij PBj

Nw

Uwwvi= j_--1 Uwwvij PWj

NW

Uwwsi = j_--1 UWWSij _Tj;

= VWBSi + VWBDi + VWBVi + VWWVi + VWWSi

K

VWBSi= k_1= (Vrsik sin 0Ai + v 0sik cos 0Ai ) T k
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Forces and moments on the isolated body. --The lift, drag, and pitching

moment of the body due to the line sources and doublets alone are calculated

neglecting any interference effects from the wing. Such interference terms

are added later. The body is considered to be approximated by K truncated

cones. The forces and moments on a body segment having an angular width ASj,

and located between x i and Xi_l, will first be determined.

The lift of this segment is

(-_)ij = PBj (xi - xi-1) (ri + ri-1) cos 0 A0j/2

The pressure drag is given by

(106)

q D CpBJ (ri2 - r2-1 )A@j/2 (107)

The notation is the same as that illustratedin the sketch preceding equation (85),

and C is given by equation (102) at J points around the circumference.
PBj

The total lift, pressure drag, and pitching moment may now be obtained by

summing the segment contributions. For example

LB 1 J _ A(L_)
CLB - q SW - S_V "j_l i:1 ij

J K I_D )DB 1 X i_l -_- ijCDB - q SW - SW j=l "=

- - -_ Z K AD (ri cos 0j - z)
CMB q SW c Sw c j=l ij

where the moments are computed about the point (x, z), c is a reference chord,

and Sw is the reference wing area. The forces and moments are computed for

the half-body only.
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Forces and moments on the wing. --The forces and moments acting on the

wing are determined by calculation of the forces and moments acting on the upper

surface of the wing and adding them to those acting on the Iower surface. The

pressure coefficient on a wing panel is given by equation (104). The normal

force on the surface of a panel is the product of the dynamic pressure, the

pressure coefficient and the panel area

F i = q Cpi Ai

Resolution of this force into components normal and parallel to the free-stream

direction yields

where

L i = _ F i

dz = + "ii

is the slope of the panel with respect to the x-y plane.

to the upper surface, the lower to the lower surface.

The pitching moment with respect to a point (x, 0, z) is:

(109)

(110)

The upper sign refers

M i = - L i (xi - x) + D i (zi - z) (i11)

The sum of the forces and moments on the upper and lower surfaces, divided

by the product of the dynamic pressure and the reference wing area, results in the

lift, drag, and pitching moment coefficients for the wing:

NW

1 _,, (Lui + LL.)CLw - q SW i=l i

(112)

N W

CD w - q SW _ (Du i + DL.)i=l i

1

CMw = _._ (Mu i + ML.)
qSwc i=1 I

where the subscripts U and L refer to the upper and lower surfaces.
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Interference forces and moments on body panels. --The forces and moments

on the body panels are similarly calculated. The normal force on the panel sur-

face is given by equation (109). The interference lift and drag may now be cal-

culated, making due allowance for the inclination of the panel,

L i = - F i cos 0 i

[fdz, i]D i = F i L\Tx)i - a cos 0 (113)

where dz'/dx is the slope of the panel with respect to the primed system of

coordinates having its origin in the foremost panel corner, as illustrated in fig-

ure 1 (page 11). As before, the pitching moment is given by equation (111).

The lift, drag, and pitching moment coefficients are given by equation

(112), omitting the terms with subscript L.

Forces and moments on wing-body combination. -- The resultant lift, drag,

and pitching moment coefficients may now be obtained by adding the isolated body

coefficients, equation (108), to the wing coefficients and the body interference

coefficients, both from equation (112). This completes the determination of

the forces and moments on the wing-body combination at a given angle of attack.

4.6 Applications to Specific Problems

The method of aerodynamic influence coefficients can be applied to a wide

variety of aerodynamic problems involving supersonic flows about wing-body

combinations. The generality of the method is primarily due to the matrix for-

mulation of the problem, which introduces considerable simplification into the

algebraic manipulations involved. For example, either the direct problem of

determining the pressures, forces, and moments on configurations of given

geometry, or the inverse problem of determining the geometry which will result

in certain desired aerodynamic properties can be solved with equal ease. In

particular, the wing camber and twist required to minimize the drag of a wing-

body combination under given constraints of lift, or lift and pitching moment,may
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be determined by additional straightforward operations on the aerodynamic matrix.

The varions applications will be outlined in the following sections.

Direct problems. -- The determination of the aerc_lynamic pressurcs, forces,

and moments acting on a wing-body combination of given geometry has been outlined

in section 4.5. Briefly, the problem is solved in three steps, beginning with the

analysis of the isolated body, followed by the analysis of the wing in the presence

of the body, and completed by calculation of the interference effects of the wing

on the body. This technique is fundamental to the solution of both direct and

inverse problems, once the geometry of the configuration has been defined. The

specific direct problems that can be treated with this method are outlined below.

Examples giving results for selected cases are presented in section 4.7.

Body alone: Given a body having circular, or nearly circular cross sections,

and having arbitrary camber and angle of attack, determine the pressures, forces,

and moments.

Wing alone: Given a wing planform that can be approximated by a series of

straight line segments, and having arbitrary angle of attack, camber, twist, and

thickness distributions; determine the pressures, forces, and moments. This

problem can be solved at a number of angles of attack to give the theoretical lift

and moment curves and the drag polar.

Special cases include the calculation of plane wings at incidence, non-lifting

thick wings, and the effect of control surface deflections.

Wing-body combinations: All cases described above may be calculated for

the combined wing and body, taking into account all the interference effects of one

on the other. In particular, the effects of symmetrical body contouring may be

_ included in the analysis.

Inverse problems. --Inverse problems fall into two categories. The first

category includes the determination of the wing camber and twist distribution
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required to suPl)ort a given lift distribution. In the sccon(l category, the wing

camber and twist arc found that will satisfy the con(lition of minimum (Irag under

given constraints of iift andpitching moment. These two eatel_oriesare described

in detail below.

Given lift distribution: The slope of the camber surface that will support a

given lift distribution, PW' may bedetermined by inverting equation (100) thus:

I dzc } a + {nWB} + [AR] {Pw} - EAwB] [ABB] -I{nWBS} (114)

where _nWB • is the normal velocity distribution induced on the wing IN the

body line sources and doublets, [AR] is the reduced aerodynamic matrix,
t. J

in
given by equation (101), and [AwB ] [ABB ] -1 '1 WBS} is the normal

velocity component induced on the wing by the cancellation of the normal velocity

coml)onents induced t)5, the wing-thickness distribution on the body.

A special ease results when the lift distribution on the wing is constant. In

this case, however, if additional pressures are introduced by the wing and body

thiclmess distributions, or body camber and angle of attack effects, then the

pressure distributions on the upper and lower surfaces of the wing will not be

constant.

Minimum drag for given lift and pitching moment: The wing camber and

twist required to minimize the drag of a wing-body combination under given

constraints of lift and pitching moment may be determined by applying the calculus

of variations to the drag equation. The problem is formulated by defining a

function F in terms of the NW variables PWi and the two auxiliary variables, or

Lagrange multipliers, )t 1 and )t 2' The function F is chosen so it will be

equal to the drag when the wing lift and pitching moment are equal to their con-

strained values L and M, respectively. One such function is

F = D + )tI (L - L) + )t2 (M - M) (115)
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where

N W

L = - Z Ai PW i
i 1

(dzo cdzc D = L i = - A i
i=l \--_x/i i=1 \ (--_x]i pwi

NW Nw

M = - Z Li (xi - x) = Z Ai (xi - x) Pwi
i=l i=1

and A i

Pw i

(dZc 

is the area of panel i

is the pressure difference across panel i

is the surface slope of panel i

x i

x

is the coordinate of the centroid of panel i

is the x coordinate of the moment center

It is assumed that the moment center lies on the center line of the configura-

tion and in the wing reference plane.

The NW + 2 conditions for minimum drag may now be written

aF #D aL aM
- + )tl + )'2 - 0, i = 1,-..N w

SPw i aPw i SPw i SPw i

_F

itk I
- L -L=O

J__F = m
_X 2 M - M = 0 (116)

To evaluate these partial derivatives it is necessary to express the camber

surface slopes (dzc/dx)i in term s of the pressure differences across the wing

panels Pwi. The boundary conditions on the wing require that the slope of the

camber surface be equal to the resultant normal velocity component at each point.

Therefore

-_-x/i nWB i nWBVi + nWWVi (117)
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where nWB i, the normal velocity on the wing due to the body line sources and

doublets, is given by equation (93) for a specified body shape. Expressions for

nWBVi and nWWVi are given following equation (72) and are repeated below for

convenience. The normal velocity on the wing due to the distributions of vorticity

on the wing panels is given directly in terms of pw i as follows

Nw

nwwvi = Z aWWVij PWj (118)
j=l

However, the normal velocity on the wing due to the distributions of vorticity on

the body panels is given in terms of the pressure difference across the body

panels, PB.'
1 N B

nWBVi = Z aWBVij PBj
j=l

Thus an expression is required relating PBi to pw i •

sired result in matrix notation,

(.119)

Equation (99) gives the de-

$

where I nBWS }is an array giving the normal velocity components on the body

panels due to the wing thickness distribution. For wings without thickness, this

term will not appear in the above equation.

Finally, substituting equations (118) and (119) into equation (117), and simplifying,

gives the desired result:

dz c_ NB NW
k--_-x]i : nWBi - Z bij nBWSj + Z aRij PWj

j=l j=l

where bij is an element of the matrix:

N w

[Bij] = Z [AWBik] [ABBkj]
k=l

(121)

-1

is an element of the reduced aerodynamic matrix given by equation (101):

e%] =
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,n_o_boveox_rossions,[AWB],sthomatrixofthoi_looococoo,icionts
aWBVij, [ABB ] is the matrix of the influence coefficicnts aBBVij, and so on,

its described following equation (96).

The partial derivatives indicated in equation (116) may now be evaluated.

Tlle expression for the drag becomes:

NWZi1 Zi1NW /n _--_WBi N_ )PWjD = ..= D i = - _.= A i Pwi - bij nBWSj + "= aRi j
(122)

Therefore,

_Pwi i WB i j=l bij nBWSj j=l aRij PWj aRji

=-Ai WBi-j___I bijnBWS -. (AiaRij+AjaRji)Pw j
(123)

also,

Similarly,
_F

_M
- A i (x i - x)

aPw i

Nw

- - E Ai PW i - E
j=l

Nw
#F

- Z Ai PW i (xi - x) -
#)'2 j=l

(124)

(125)

Substituting these partial derivatives into equation (116) gives a system of

NW + 2 linear equations. This system of equation may be written in matrix

form, as follows, where Nw has been replaced by N for simplicity.
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_(_.la|lll ' \I3Rll ) - C\lal{12 " .\2a1121) • . . - A 1 (x 1 -_) A7

-tA2al{ - Alall ) - (A.2a R _ A2alt ) • . . - A 2 {x2 - _) A 2
21 12 2'2 '22

- (A:tal'_:H " Alat{L3 'p

-(ANaRN l AlaRIN)" . . -AN(×N-X)A

- A 1 --A., . . . 0 0

(x I - _1 A 1 ix, -_ A 2 0 0

¥

'V

2

1

• N

A1 (nWB l -E bl nBWSj ;
j=] J

N

A2 (nWB 2 - _ b2j nBWSj )

N

AN (nWBN - _ bNj nBWSj)

z

(126)

The wing pressure distribution for minimum drag may be found by inverting

the matrix and postmultiplying it by the array on the right-hand side of the equa-

tion. If the lift only is to be constrained, the row and column of the matrix corre-

sponding to X 2 is omitted before the inversion. Finally, the optimum camber

shape may be calculated by equation (114).

The method of Lagrange multipliers outlined above may be extended to in-

clude many other cases of interest. Examples of cases that have been determined

by this method, but not reported here, are:

1) Optimization of the wing camber surface while keeping the total lift, or total

lift and pitching moment.of the wing plus body constrained to given values.

2) Optimization of the wing twist for a given camber and lift (or lift and pitching

moment) on the wing.

3) Optimization of any consecutively numbered group of panels on the wing, while

constraining the camber and twist of the remaining panels, and the wing lift,

or lift and pitching moment. This case may be useful for determining optimum

flap settings at given cruise conditions.

4) Calculation of the incidence at which a given cambered wing will achieve a

given liftcoefficient.
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4.7 Theoretical Comparisons

In this section results of the method of aerodynamic influence coefficients

are compared with linear theory calculations published by other investigators.

Theoretical solutions for isolated wings, bodies, and wing-body combinations

are compared. The form of the pressure distributions, and the prediction of

the lift and drag of the examples studied are emphasized. In particular, the

reasons underlying the choice of the various control points used in the calcula-

tions are discussed.

Pressure distributions on flat plate wings, mPressure distributions have

been calculated for delta, double delta, arrow, and constant-chord wings over

a range of supersonic Mach numbers and compared with linearized theory re-

sults published by other investigators.

It was found that location of the panel control points had a dominant effect

on the form of the wing pressure distributions obtained. Figure 9 shows the

calculated chordwise pressure distributions (corresponding to two control-

point locations) on an inclined, planar, constant-chord wing with sonic leading

edges. The upper plot shows the result obtained when the control point is lo-

cated at the panel centroids. A strong oscillatory tendency in the chordwise

pressure distribution is observed that does not agree with the exact linear

theory solution, except towards the trailing edge of the wing. The plot on the

lower right shows the result obtained for control points located at 95 percent

of the streamwise chord through the panel centroid. The chordwise pressure

distributions are now smooth, and they follow the linear theory solution closely,

except very near the leading edge and in the region of the strong discontinuity

introduced by the wing-tip Mach wave.

The effect of the control point location on the pressures calculated for

three panels on the inboard row of this wing is shown in the sketch on the lower

left of the illustration. Here the pressures converge smoothly towards the

correct linear theory value as the control point is moved towards the trailing

edge of the panel. This is true for panels having sonic or supersonic trailing

edges. For panels having subsonic trailing edges, however, the normal velocit:

at the trailing edge is infinite, and the panel pressure becomes indeterminate.

To avoid this difficulty, and to maintain a good approximation to the exact linear

theory pressure coefficients, the control points have been arbitrarily located
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at 95 percent of the streamwise chor(l through the l)an(;l c.(:ntroid. This (.hoic_e

of control-point location has given an ade(luate ret)r(_sent_ltion of the I)ressur(:

distribution for all caml)ered or uncambered lifting w inlas so far investigated.

Examples illustrating the results obtained for isolated wings are presented

on the following pages. In all these examples, the wing has been suhdivi(led

into 100 panels, spaced evenly in 10-percent increments in both chor(lwise and

spanwise directions.

Figure 10 shows the pressure distribution calculated for fiat-plate delta

wing at incidence, compared to an exact linearized theory solution. The wing

planform corresponds to that of Example II of reference 11, and has a sub-

sonic leading edge with tan A / 18 = 1.2. The present theory agrees reason-

ably well with the exact result, except in the region of the wing tip, or near the

leading edge. The overall lift coefficient of the wing is 3.58, compared to the

exact value of 3.55. The wing center of pressure is correctly located at a point

two thirds of the root chord from the apex.

Figure 11 shows the pressure distribution calculated for a fiat-plate arrow

wing at incidence. These results are compared with both the exact linear

theory solution and to another influence coefficient method recently published

by Carlson and Midclleton (reference 5). The wing has a subsonic leading

edge and supersonic trailing edge at Mach 2.0. This particular wing planform

has been studied extensively at the NASA Langley Research Center and as a

result, both theoretical and experimental data are available for comparison.

The present method agrees reasonably well with both the exact linear theory

result and the cited numerical method.

The final example, showing the pressure distribution of a flat-plate, double-

delta wing, is shown in figure 12. This was chosen to illustrate the application

of the method to more general planforms. The exact linear theory analysis of

this planform, based on a superposition procedure, was presented in reference

12. This particular planform was also analyzed by Middleton and Carlson

in reference 2. The illustration shows the spanwise pressure distributions

at two stations on the wing, which were obtained by interpolating chordwise

pressure distribution plots. The pressure distribution shows the same magni-

tude and trends as the exact solution, but does not reproduce the pressure dis-

continuities predicted by the method of superposition.
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The lift and center of pressure at two Math ntunl)(_rs were estimated with tea-

sonable precision, however,

ME TqOD

Superposition

Analysis (12)

Present Method

Carlson and

Middleton (2)

and are presented for comparison in the following table:

M : 1.414

C L XCp

0.0514 0.682

O. 0515 O. 691

0. 0507 O. 687

M : 1. _;_7
C L XC P

O. ()4_;1

0.()t18 O. ti97

O. Oii9 O. 686

Pressure distribution due _o wing thickness.--Wing-thickness effects are

simulated by constant distri,mtions of sources on the panels. The behavior of

these singularities is smtieiently different trom the eonstant distributions of

vortieity used to represent the lifting surfaces that a new control point must

be defined for calculating the velocity components and pressures resulting from

thickness. Best results were obtained when the thickness control points were

located at the eentroids of the panels.

The source singularities approximate the wing by a series of flat, wedge-

like surfaces bounded by ridge lines along the panel edges. The slope of these

surfaces corresponds to the actual surfaee slope only at the panel eentroids;

along the panel edges, the surface slope is discontinuous.

This method of representing the wing thickness appears to be adequate, pro-

vlded no panei _.dgcs have the same slope, or nearly the same slope, as the Mach

line. K this oecurc,, the solution diverges and an undesirable oscillation in the

ehordwise pressure coefficient generally appears in the calculation in the region of

the sonic panel edge. An example of this effect is shown by the tmsmoothed distri-

butions (a = 0 °) in figure 27 (page 157) for a subsonic leading-edge arrow wing.

l'l,,e ,;sciIlation is insignificant inboard, but grows to an unacceptable magnitude as

the tip section is approaehed. Fortunately, it is usually possible to fair a smooth

curve through the end points of the pressuro ascillation, a curve that will give a

better approximation to the true chordwise pressure distribution in these eases.

It should be noted that this pressure oseillation can be minimized by adding a

singularity of higher-order to the present source representation. This additional



singularity introduces a linear variation of the source distrilmtion in the x direc-

tion, and would make it possible to eliminate the discontinuities in the surfacc

slopes along the panel edgesinside the wing planform.

Pressure distribution on cambered wings. -- The pressure distribution on

cambered wings is calculated in the same manner as the pressure distribution

for flat wings at incidence. The slope of the camber surface must, however,

be calculated at the panel control points. A sample calculation showing the chord-

wise pressure distributions on a cambered arrow wing with thickness at three

angles of attack is presented in figure 28, on page 158.

Tile inverse problem of calculating the camber surface corresponding to a

given pressure distribution is numerically simpler than the preceding problem

and generally yields excellent results. An example giving the camber surface

of a delta wing planform corresponding to a linearly varying chordwise

pressure distribution is shown in figure 13. The camber surface is seen to agree

very closely to that predicted by the method of reference 11.
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Drag of cambered wings. -- The pressure drag of a cambered surface is

given by the double integral of the product of the surface pressure and slope,

evaluated over the wing area:

FFD = -q Cp dx dy (127)
-b/2 LE

In equation (110), this integral is replaced by a summation over the wing panels,

as follows.

N w

D = -q E d(___. Ai (128)i=l Cpi

where the slope of each panel is defined at its control point. This formula is ade-

quate to calculate the drag of uneambered wings because the pressure on each

panel is assumed to be constant, and the surface slope is constant between con-

trol points. For cambered wings, on the other hand, the surface slope of the wing

varies continuously between control points, and may even approach infinity near

the leading edge, as illustrated in figure 13. As a result, equation (128) will not

in general yield a good approximation to the drag unless the term (dz/dx)i is re-

placed by the average slope of panel i.

As illustrated in figure 14, the slope of a cambered wing is approximated by

a series of straight lines through the control points. The slope at any point on a

given panel is estimated by a linear interpolation formula. If the panel lies

along the leading edge, the slope is estimated by a linear extrapolation of the

slope of the first two panels. The formulae are given below:

For leading-edge panels,

•
For the remaining panels,

- + .... (130)

_c ) ci_ 1 i -11 + R ci_ 1 - 1
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where R

R

ci

ci-1

is panel chord fraction defining the location of the panel control point

is the panel chord fraction defining the average slope

is the panel chord

is the chord of the preceding panel

In equation {129) the subscripts 1 and 2 refer to the first and second panels

along the leading edge in any given row.

The value of R has been chosen by making a comparison between the drag

given by the program for a constant pressure delta wing, and the exact linear

theory solution for this wing, which is:

CD - 4 _ _ cosh_lb _ cos_ 1 1 _ b_ - 1 cosh -1 b +b 2b

2
_C L

4

tan A
for b - > 1.0

for b < 1.0 (131)

The results are presented in figure 15. It can be seen that the drag given by

the program varies linearly with R, and increases as the point used for defining

the slope moves towards the trailingedge of the panels. For subsonic leading-

edge delta wings, agreement occurs for 0.675< R< 0.825, depending on the

wing aspect ratio. Itshould be emphasized that the drag given by the program

deviates very littlefrom the exact value over the entire range of R for wings

having sonic leading edges, but that the deviation increases as the sweep-back

increases. Wings having supersonic leading edges showed results almost inde-

pendent of the choice of R.

Additional correlations of thiskind are required to confirm the validityof

this method for calculating the drag of cambered wings. On the basis of the

present limited study, however, itwas decided to use the value of R = 0.75 in

the program for computing the effectivepanel slope used in the drag calculations.

This choice of R gives values of CD/_ CL 2 which differby less than 2 percent

for wings having the lowest aspect ratios studied, and less than 1 percent for the

sonic leading-edge planform.
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Wing camber for minimum (lrag. --Plots showing the minimum drag of a

family of isolated delta and clippe(l-tip arrow wings are presented in figures 16

_md 17 for comparison with data presented in reference 3. The present theory

calculates the surface shape for minimum drag by first calculating the optimum

pressure distribution by inverting the matrix of equation (126), and then substituting

this result into equation (114) to obtain the corresponding panel slopes. Both the

aerodynamic matrix and the panel slopes are calculated for control points located

at 95 percent of the local panel chords, to avoid undesirable oscillations in the

results. The slope interpolation formulae developed in the previous section are

then applied to calculate the drag of the resulting cambered wing. The interpolated

panel slope corresponding to R = 0.75 was used in the drag calculations shown in

the figures.

Figaare 16 shows the results obtained for a family of delta wings. The mini-

mum drag calculated by the present program is somewhat higher than that esti-

mated by the methods of reference 3 for wings having subsonic leading edges.

On the other hand, the results do agree reasonably well with the predictions of

the aerodynamic influence coefficient method of reference 1 . The drag predicted

for the flat-plate wing without leading-edge suction agrees closely in all three

methods, however.

Figure 17 shows similar results for a family of clipped-tip arrow wings.

As indicated on the figure, excellent agreement is obtained between this result

and the minimum drags estimated by the methods of both references 1 and 3.

It is apparent from an examination of these results that further correlations

between the present theory and other known minimum drag solutions will be very

desirable in order to obtain confidence in the range of application of the method.

In the meantime it is sufficient to say that the method gives good agreement

with other accepted procedures for determining the wing camber surface for

minimum drag.
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Pressure distribution on a cone. --The circumferential pressure distribution

at Mach 2.0 for a 10-degree circular cone at an incidence of 0.10 radian is presented

in figure 18. The pressure distributions are identical at all sections along the

length of the cone. The results obtained with both the linear and nonlinear pres-

sure coefficient formulae are illustrated. On the basis of the nonlinear formula

(equation 102) the progTam predicts a lift coefficient only half the exact theoreti-

cal value of 0. 185 given by the cone tables. The lift coefficient of the cone is

predicted much more accurately if the linear pressure coefficient formula (equa-

tion 105) is used in the program.

At zero incidence, the linear formula again gives a closer approximation to

the exact value. The cone tables give the value for Cp = 0. 104, while the linear

formula gave Cp = 0.114, and the nonlinear formula Cp = 0.087.

For bodies of revolution of arbitrary shape, it has been found that, in general,

the nonlinear pressure coefficient formula gives the best approximation to the ex-

perimental results at zero incidence. Lift effects, on the other hand, are best

estimated by the linear formula. An example comparing the theoretical and ex-

perimental pressure distributions on a parabolic body of revolution is shown in

figure 25 (page 153).

Pressure distribution on wing-fin combination. --The pressure distributions

calculated for a rectangular wing in the presence of an inclined rectangular fin

are presented in figure 19, and compared with the linear theory solution given by

Snow in reference 13.

The theoretical solution for the case in which the wing has an incidence (_,

and zero fin incidence, is given below:

On the wing

[_ R ?r/7 sin 17 B/_ ] (132)Cp = 2_ + 2 tan-1 R _/:Y1 - cos rt B/_

On the fin

J2 R _/9/ sin _ B/T

Cp = 2or + _ tan-i i + R _/_ cos _ B/_'
(133)
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and r _ fly2 + z2/x.

In file figlare, the spanwise pressure distributions at the midchord are compared

for three fin inclinations. The agreement is excellent.

The program, in its present form, will no longer admit cases involving wing-

fin combinations as shown. This is the result of specializing the geometry

definition and paneling sections of the program, which restricts its application

to configurations composed of wings and circular bodies only.

Pressure Distributions on Wing-Body Combinations.--Figure 20 shows the

pressure distributions calculated for a rectangular wing-rectangular body com-

bination analyzed byLu Ting in reference 14. The calculated pressure coeffi-

cients oscillate above and below the theoretical results published by Lu Ting,

particularly in the area of the wing-body intersection. The reason for this oscil-

latory behavior is not known at present, although an instability inherent in the

numerical analysis is suspected. It is interesting to note that similar instabil-

ities did not occur for the polygonal bodies used to approximate bodies of re-

volution in the other examples presented in this report.

Wing and body pressure distributions calculated at Math 1.48 for a configu-

ration composed of an unswept rectangular wing centrally mounted on a circular

body are presented in figures 30 through 33 (pages 161 through 164). The pre-

sure distributions calculated by Nielsen (reference 15) are presented in terms of

an incremental pressure coefficient P, obtained by taking the difference between

the local pressure coefficients for the lifting case and the non-lifting case (cxW =

cx B = 0). In this way, the effects of the nose shape on pressure distributions

are eliminated. It should be remarked that the present theory calculates the

surface pressure distributions including the effect of the nose shape; consequent-

ly, the results presented are the difference between two calculations. The in-

cremental pressure coefficients calculated on the wing and body agree favorably

with NielsenTs theoretical results, both for wing only at incidence and for the

case in which both wing and body are at incidence.
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5. COMPUTER PROGRAM

5.1 Description

The digital computer program described in this section has been developed

to solve the problem of optimization of wing camber surfaces for wing-body

combinations at supersonic speeds. Direct and other indirect aerodynamic

problems can also be solved.

The program is coded in FORTRAN IV and MAP languages for the IBM

7090/7094 (32K) digital computer under the Systems Monitor, IBSYS Version

12. It is compatible with the NASA-Ames direct-coupled IBM 7040/7094 com-

puter system. Because the program exceeds the capacity of a single core load,

the Loader Overlay feature is used which allows the complete program to be

subdivided into smaller segments, or links. The links are processed in a

specified order to solve a particular problem.

The Overlay feature requires one of the system units to be used as the

input-output tape on which the links are written. This unit is specified on the

$ORIGIN control card according to the procedure outlined in Part II. In addi-

tion to the input and output tapes, the program uses seven tape units for scratch

purposes. The choice of tape units to be used will depend on the particular com-

puter installation, and tapes must be changed as required. A special purpose

subroutine, OPCAMI, initializes all the tape units and assigns a logical number

to each. To make any tape changes, it will be sufficient to change only the

logical designations in this subroutine (see Part II).

The complete program consists of four sections: Geometry Definition,

Geometry Transformation, Geometry Paneling, and Aerodynamics, as out-

lined by the flow chart (figure 21). The first two sections provide a suitable

geometric description of the configuration and the third section subdivides the

configuration into panels. The Aerodynamics section performs all aerodynamic

calculations and solves the problem under consideration.
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Program execution is controlled by the subroutine OPCAM, a control pro-

gram located in link 0 under the program Overlay structure. Those control

cards within the data deck that determine which program sections are used to

process the case, are read by the subroutine OPCAM andlower-level sub-

routines in each of the following four program sections:

1. GEOMDin link 5 (GeometryDefinition section)

2. TFLAT in link 11 (GeometryTransformation section)

3. PANEL in link 12 (Geometry Paneling section)

4. AERO in link 20 (Aerodynamics section)

Multiple cases, each involving a different wing-body configuration, canbe

run. Whena nonsystems error condition occurs during processing within a

section of the program, an error messageappears, execution of the present

case is terminated, a partial dataprintout is given, andthe following case is

processed.

Execution time averages7 to 8 minutes for a typical (100panels) body-

alone or wing-alone case and 18 to 20 minutes for a wing-body combination of

200panels. The computer time andnumber of printout lines for a single con-

figuration canbe estimated from the following equationsbasedon experience

onan IBM 7094/M2.

Time (minutes) = 2.2 + 0.3G + (3.8 10- 4 . p2) A + 0.6C,

where G indicates type of paneling:

= 0., no paneling

= 1., wing paneling only

= 2., wing and body paneling

P is number of panels (if no paneling is required, use P = 10)

A indicates aerodynamic calculations:

= 0., no aerodynamic calculations

= 1., aerodynamic calculations requested

C is number of aerodynamic cases. Each of the following

are considered a case:
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Output (lines)

where

Wing optimization case

Direct aerodynamic case

Indirect aerodynamic case

Each _mgleof a polar series

= 100+ _500+ (10 • p1/2) V C t

V indicates velocity component printout:

= 1., no velocity component printout

= 2., velocity components requested

T indicates type of case:

= 1., wing-alone case

= 2., body-alone case

= 3., wing-body ease
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5.2 Program Usage

The program solves a problem in three steps. In the first step the con-

figuration geometry is defined and transformed to a more convenient repre-

sentation from input information. A wing alone, body alone, or wing-body

combination can be defined. In the second step the configuration is paneled

and required geometric data are calculated. Figure 22 illustrates the definition

and paneling sequence. The third and final step performs the aerodynamic

calculations for each case requested. Discussion of the body alone, wing alone

and wing-body problems follows.

Body alone. -- For the body-alone case, no paneling is required. The

entire body is represented as an equivalent body of circular cross section by a

series of equally spaced line sources and doublets. The user may define a

cambered body with arbitrary cross section and have the program determine

the equivalent body of revolution, or an equivalent body may be input with its

camber specified separately.

The user specifies the body by a number of X-stations at which an array of

radii (p) and angles (O) are given. A maximum of 50 body stations may be

specified. The program assumes that all bodies are symmetrical about the

vertical plane; therefore, only data for half-bodies are specified, that is, 0

degrees <_ O <_ 180 degrees where the top meridian line corresponds to O =

0 degrees and the bottom meridian line corresponds to O = 180 degrees.

Alternate techniques for specifying body stations are presented in the discus-

sion of card input format, section 5.3.

An axis, referred to as the body definition axis, is established parallel to

the computer reference X-axis. The body definition axis location is established

by specifying a Y, Z coordinate pair through which the axis must pass. Points,

from which the P - O arrays generate body sections at each station, are

specified relative to the body definition axis at each defining station. After

the P - O array has been computed, the program constructs longitudinal
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meridian lines through sets of radii end points.

tion will look similar to the following sketch:

The resulting computer defini-

LOCAL P-O ORIGIN

EFERENCEX-AXIS

AZ X

BODYDEFINITIONAXIS

_-- y

The locations of the cross-section centroids of the aft body station and the for-

ward body station are then determined by the program. Centroid locations are

determined from the station cross-section geometry. The section area and

centroid depend on the type of interpolation chosen to define the fairing between

the given points. If linear interpolation is requested, a polygonal area will be

formed. If biquadratic interpolation is requested, a somewhat different area

will result as shown below.
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If a body of revolution is being defined (constant p at each station), a sym-

metrical O-array should be specified or the centroid location will be incorrect.

The sketch below shows how a nonsymmetrical 0 -array can cause an error

in the centroid location.

CENTROID

Z

h

CONSTANT p
SYMMETRICAL0 ARRAY

CENTROID

_y :-- Y

CONSTANTP
NONSYMMETRICAL0 ARRAY

After the fore and aft section centroids have been determined a new body

axis, the x-axis, is constructed through these centroids. All remaining cal-

culations are performed relative to the newbody axis system. An equivalent body

of revolution about the x-axis is determined. The number of stations along the

new body axis at which line source boundary conditions are located is specified.

Because these stations are evenly spaced along the body length, the specifica-

tion of the number of sources effectively establishes their location. The body

is cut at each source control station by transverse planes. Centroid locations

relative to the body axis are determined from the body sections resulting from

these transverse cuts.
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The average of the radii connecting the x-axis with meridian lines at each

source control station is used as the radius of the equivalent body with circular

cross sections. These radii are used by the aerodynamic section to determine

the body source strengths.

The aerodynamic section now determines the axial and circumferential

velocities and pressure coefficients at source control stations. Total C L, CD,

and CM are determined for the specified Mach number and angle of attack. The

program input for a parabolic body having a fineness ratio of eleven is presented

on page 134 and 135 in section 5.4.

Wing alone. --It is first necessary to define the wing planform by specify-

ing the coordinates of all corner points and break points. Control chords,

except perhaps the wing tip control chord, are defined streamwise through each

corner point and break point. A minimum of two control chords must be

specified. A pointed wing tip is considered as a control chord of zero length.

The wing planform is defined by projecting the actual wing into the X,Y plane

as shown below.

y

__ PLANFORMCORNERPOINT
PLANFORMBREAKPOINT

CONTROLCHORDS

#_" _ _ OF ZERO LENGTH
X _ J__..,B" OR

_WING T-'/'P'CONTROLCHORD
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The pr()gran_ paneling secti(m is used to panel the wing. A maximum of 100

wing p:_nels may I)e Sl)eeified. Si):mwise panel e(lges arc Sl)Ccifie(I by a single

set of constant percent chord lines. Streamwise panel edges are specified by a

series of wing buttock lint, locations. Wing tips can be l)aneled in two different

ways :is shown beh)w:

= y

X TRAILING EDGE _ LEADING EDGE

CORNER-POINT_ _ CORNERPOINT X

"WINGTIP CONTROL
CHORD

-,,_"_T RAILI NG EDGE

CORNERPOINT

y

COINCIDENT
LEADING AND
TRAILING EDGE
POINTS (ZERO)
LEN GTH
CONTROL CHORD)

Tip paneling is in part controlled by the technique of defining the wing. If a

planform corner point on the trailing edge is joined to a corner point on the lead-

ing edge by a wing-tip control chord of finite length, the spanwise panel edges

will form quadralateral tip panels. If the planform leading and trailing edge tip

points are specified as coincident, the tip will have triangular panels.

Wing thickness is specified by tables of upper and lower airfoil ordinates.

Camber and twist can be either included in these ordinates or input as slopes in

the aerodynamic section. The airfoils, one for each streamwise column of

panels, must be oriented streamwise at spanwise locations corresponding to the

Y-centroid of each column. A nondimensional airfoil ordinate array can be spe-

cified, because the program scales every array to fit the chord length at the

specified span location. Further, for wings having no twist and the same airfoil
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from root to tip, only one ordinate table is needed. The program will scale and

correctly locate the airfoils across the span.

Program inputs for an arrow wing having camber, twist, and thickness are

shown in section 5.4 (page 137). The aerodynamic section calculates pressure

and force coefficient data for the specified wing geometry at Mach 2.05 for an

angle of attack series (_) = 0, -2, 2, 6 degrees). In addition, the wing camber

shape, pressure coefficients, and force coefficients for a wing with identical

planform and thickness distribution are determined for two cases. One has a

constant '_ Cp distribution and the other is a minimum drag wing. Both are con-

strained to a total CL = 0.1.

Wing-body combination. -- The wing-body case, the most complex both

geometrically and aerodynamically, requires full utilization of the program.

The wing and body are defined as in the previous discussions on wing alone and

body alone. However, because the effect of the wing on the body is desired, it

is necessary to panel the body in the region aft of the wing leading-edge inter-

section. The effect of the wing on the body is determined by the influence co-

efficient method. Body pressures caused by body thickness and camber are

still determined by the source-doublet method. A maximum of 100 body panels

and 100 wing panels may be specified.

The program panels the defined body. If it is desired that the equivalent body

of circular cross section be paneled, the body defined must be the equivalent

body. Note that in a body alone case, the radii and station centroid locations

determined by the geometry section are passed directly to the aerodynamic

section for calculating the source and doublet strengths. This procedure bypasses

the paneling section. Therefore, .the paneling section operates on the body definition.

The geometry section defines the body in the same manner as the body-alone

case. The meridian lines constructed in the definition section form the stream-

wise body panel edges. Therefore, it is necessary to know the desired body

paneling when the body definition is being established, because the 0-array

determines the radial location of meridian lines. The transverse body panel
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edges are specified in the paneling section. Wing paneling is handled the same

as in the wing alone case except that the inboard wing panel edges formed by the

wing-body intersection are determined by the program. The wing definition

should extend into the body. This ensures that a wing-body intersection will be

found by the program. Only the exposed wing planform is paneled.

The procedure of establishing a body axis system through the forward and

aft body-station centroids is the same as the body-alone case. In addition, the

wing is oriented parallel to the x-y plane. The wing height, ZA, is computed by

the program as the average of the leading and trailing edge heights above the

x-y plane.

Z

DEFINEDWINGPOSITION

MIDCHORD

TRANSFORMED
WINGPOSITION

AFT STATION
CENTROID

This transformed wing-body combination in the body axis system is the

configuration that is paneled. All panel corner points, centroids, and control

points are determined relative to the body axis system. Any wing incidence

desired relative to the x-axis may be given by specifying an airfoil ordinate

table with the correct incidence or may be input as slopes in the aerodynamic

section. The airfoil ordinate tables affect neither wing nor body paneling.
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The wing intersection must not cross a body definition meridian line. This

can be prevented either by choosing a _-array that straddles the wing intersec-

tion region or by specifying a 0 that directly corresponds to the wing-body inter-

section in the body axis system.

B ARRAYTHATSTRADDLESTHE
WINGINTERSECTIONREGION

Z

.-_y

(_ ARRAYTHATCORRESPONDSTO THEWING
INTERSECTIONALONGA BODYMERIDIANLINE

WINGINTERSECTION

v X

If the body is defined with the wing intersection between meridian lines, the

paneling section will construct an additional longitudinal panel edge running aft

from the wing trailing edge as shown in the following sketch. This completes
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the additional body panel strip formed by the wing intersection. The number of

panels located around the body will be the same at all stations, and the additional

panels created by this procedure must be included within the maximum of 100

body panels.
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Body pressures due to thickness are determined from a set of equivalent

body radii. For bodies with unusual camber or cross-section geometry, it is

often more practical to define and panel the uncambered equivalent body of revo-

lution. A two-pass technique can be used to facilitate determination of the

equivalent body.

With the two-pass procedure only the definition and paneling sections are

used for the first run. The actual body is defined as described in the section on

bodies alone. All aerodynamic cards are omitted. The set of equivalent radii

(one radius for each source control station) used to determine the body source

strengths are calculated. This array of equivalent radii may then be used to

define the new equivalent body for the second computer run, which then includes

all desired aerodynamic data. This equivalent body can also be cambered by

specifying the desired displacement of the source control station centroids from

the x-axis. The body camber table which is in the aerodynamic input card set

is used to specify such a body camber.

107



Transverse body panel edges in the wing intersection region must coincide

with the spanwise wing panel edges, but do not have to be as numerous as the

spanwise edges. The body panel edges in this region are specified by a table of

integers that identify those spanwise wing panel edges, which continue around

the body to form transverse body panel edges. The spanwise wing panel edges

are numbered consecutively from leading edge to trailing edge, as sketched

below. The integers corresponding to those edges that continue around the body

appear in sequence in the table. The table must always start with the integer 1

and terminate with the wing trailing-edge number.

THENUMBERS1, 3, 5
SHOULDAPPEARINTHE

Y _ BODYPANELTABLE

/////
WINGSPANWlSEPANEL EDGE//// /
IDENTIFYINGINTEGERS /// / /

,. //// / FOUR TRANSVERSEBODY PANEL
//// / _, EDGESAFT OF WINGDEFINED

///// / INTHE BODYCOORDINATESYSTEM
1'2" 3 4' .5 l

/I// /

1 i I J II = x

Transverse body panel edges aft of the wing trailing edge are defined in the body

coordinate system.

Paneling the body is more complex than paneling a wing planform, since

many multipart panels may occur. Two-part panels also can occur on some

wing tips and along the inboard strip of wing panels if the wing intersects the

body in a region of closure as shown below.

Y

TWO-PARTWING
PANEL REGIONS
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l_o(ly pmmls occurring in regions of closure are three-part panels. All

wing m_d body panels must be quadrilateral with two streamwisc edges. When

paneling situations occur that do not satisfy these conditions, a multipart panel

whose individual parts satisfy the conditions is constructed. A typical body

panel and its parts are shown here:

STREAMWlSESIDE,
ZEROLENGTH

SECONDARY
PANELPARTS

y STREAMWISESIDE,
ZEROLENGTH

WINGLEADINGEDGE

TYPICAL THREE-PART
BODYPANEL

Most supersonic bodies do not have regions of rapid closure (hypersonic

blunt bodies are not adaptable to the linearized analysis techniques of this pro-

gram); therefore, the secondary body panel parts are usually very small. If

these secondary areas are nearly zero, the matrix of influence coefficients can

become singular, preventing matrix inversion. A tolerance control on the lead-

ing-edge slope of these secondary panel parts can be used to avoid this matrix

problem. This tolerance is specified in the paneling section. The same matrix

problem can result from secondary wing panel parts. A control tolerance on

these wing panel parts also is specified in the paneling section. Program input

illustrating the use of these tolerance controls (cards 5P and 9P) is contained in

section 5.4 (pages 146 and 147).
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5.3 Program Card Input Format

Aerodynamic cases that can be solved for the various c(mfiguration problems

are the following:

i CONFIGURATION i

! BODYALONE I I WINGALONE i I COMBINATIONWING-BODY I

I I !

r iDetermine camber and

twist, CL, CD, and CM,

for a wing with given

pressure distribution.
i

I
Determine pressure dis-

tribution, CL, CD, and

CM, for a wing with

given camber, twist, and

thickness.

i
Determine optimum

camber and twist, CD,

and CM, for a wing with

given C L or given C L

and C M.

Determine pressure dis-

tribution, CL, CD, and

CM, for an equivalent
body with the same

longitudinal area distri-

bution and camber.

Determine wing camber and

twist, body pressure distri-

bution, and total CL, C D,

and CM, for given body and

a wing with given pressure

distribution.
!

Determine wing and body I

pressure distributions, total

CL, CD, and CM, for given

configuration.
I

Determine optimum wing

twist and camber, wing and

body pressure distributions,

total CL, CD, and CM, for a

given body and wing with spe-

cified C L or given C L and

center of pressure.

The corresponding input card sets needed to define and analyze a configuration

are outlined by figure 23. A completed input data deck will resemble the illustration

of figure 24. Multiple aerodynamic cases on a given geometry for a given Mach num-

bet may be requested in the aerodynamic set. If the Mach number of configuration

are changed, the geometry must be redefined.
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CONFIGURATION

BODY ALONE

I
GEOMETRY

DEFINITION SET

1D_-6D, 22D

1
GEOMETRY

PANELING SET
1P, 2P

!
AERODYNAMICSET1A, 2A

t GIVEN SHAPE
CASE 2

3A-D-6A, 10A

WINGALONE

1
GEOMETRY

DEFINITION SET
1D, 10D-Jb.ISD,22D

I
GEOMETRY

PANELING SET
]P, 2P, 3P, 8P.m,-14P

!
AERODYNAMICSET

1A, 2A

'_1 GIVEN PRESSURE
CASE 1

3AJ,,'5A,7Ao 10A

___ GIVENSHAPE
CASE 2

3A_P-5A,8A, |0A

=_ WINGOPTIMIZATION
CASE 3

3A_-5A, 9A, 10A

WING-BODY COMBINATION

1
GEOMETRY

DEFINITION SET
1D'm'-20D, 22D

1
GEOMETRY

PANELING SET
1P_-14P

i
AERODYNAMIC SET

1A, 2A

GIVEN PRESSURE

CASE 1
3A J,,.7A, 10A

GIVEN SHAPE
CASE 2

3AI,,'6A, 8A, 10A

WINGOPTIMIZATION

CASE 3
3AID-6A,9A, 10A

FIGURE 23 OUTLINE OF INPUT CARDSNEEDED TO DESCRIBEAND ANALYZE A CONFIGURATION
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CARDTO TERMINATE
PROBLEMSET

REPEAT FOR ADDITIONAL
PROBLEMSOF DIFFERENT
CONFIGURATIONSOR SAME
CONFIGURATIONFOROTHER
MACHNUMBERS

TWOBLANK CARDS
TERMINATE AERODYNAMIC
CASES

SAMPLE DATA DECK

ENDOF DATA

TIONAL PROBLEMS(STARTSWITH DEFINITION
BLANK CARD IIA

BLANK CARD ]]A

DATA CARD SETS3A-
10AMAY BE REPEAT-
ED AS MANYTIMES
AS NECESSARY(i.e.,
minimumdrag, flat
plate, constant
pressure)

DATA CARDS3A-iOA (LAST CASE)

CARDS3A-]0A (OTHER CASEIS)!

DATA CARDS3A-IOA_(FIRST CASE}
2A

DATA CARD

_.NFIING

DATA CARDSiD- 22D (GEOMETRYDEFINITI_ SET)

FIGURE24 EXAMPLE DATA DECK
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GEOMETRY DEFINITION CARD SET ]

All geometry definition data, except title cards and literal statements, are

punched in six-field, ten-digit format. A decimal point is required in each data

field.

For a body-alone problem definition, cards 10D through 19D are omitted.

For a wing-alone problem definition, cards 2D through 6D, 19D, and 20D

are omitted.

Card 1D

Card 2D

Column Code

1-6 DEFINE

1-4 BODY

Card 3D 1-72 TITLE

Card 4D 1-10 BNS

11-20 BTHETA

21-30 AXIS(I)

31-40 AXIS(2)

41-50 CHDB

Explanation

Columns 1-6 contain the word DEFINE.

Columns 1-4 contain the word BODY.

Card 2D is used only when a body or

wing-body combination is defined.

Any desired title.

Number of defining body stations.

2. _ BNS < 50..

Number of points on each defining body

station, i.e., the number of to , 0 or

Y, Z pairs per station.
2. _ BTHETA _< 16..

Y-coordinate of body definition axis

(cf. page 99).

Z-coordinate of body definition axis

(cL page 99).

Dimensional tolerance to be used in

generating additional body meridian

line points between given stations. If

CHDB g 0. or if BNS < 4., no addi-

tional points will be generated. If

0. < CHDB < 0.001, then a value of

0. 001 will be used (see page 202 of

Part II).
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Column Code

Card(s) 5D 1-10 01
(3 maximum)

51-60 06
etc.

Card(s) 6D* 1-10 STA

(50 maximum)

11-20 YZ(1)

21-30 YZ(2)

31-40 SCODE

NoteI if options 1, 4, 5, or 6

are designated, the added infor-

mation card(s) 7D, 8D, or 9D
must be inserted behind that

station card 6D and before the

next station card 6D.

*One card is needed for each

defining station.

Explanation

Array of angles (0), in degrees at each

defining station. There must be exactly

BTHETA angles _< 16, six per card.

X-coordinate of body station.

A Y-increment added to body definition

axis to establish a local origin from

which all P, 0 for this station are
measured.

A Z-increment added to body definition

axis to establish a local origin from

which all P, 0 for this station are

measured (see page 99).

= 0. this cross section is identical to

previous section.

1. this cross section is specified by

BTHETA values of p (on cards 7D).

The {}-array of card(s) 5D will be
used.

= 2. this cross section is a circle.

(Radius given in columns 41-50. )

3. this cross section is an ellipse.

(Horizontal semi-axis is given in

columns 41-50, the vertical in

columns 51-60. )

4. this cross section is circular

(radius given in columns 41-50) with

an angle array (on card(s) 8D) differ-

ent from the 0-array on card(s) 5D.
This option allows local deviations in

the meridian lines.

5. this cross section is specified by

a set of p (on card(s) 7D) and by a

nonstandard set of e (on card(s) 8D).
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Card(s) 7D

(3 maximum

per station)

Card(s) 8D

(3 maximum

per station)

Card 9D

(6 maximum

per station)

Card 10D

Card llD

Card 12D

Column

41-50

51-60

1-10

51-60

1-10

51-60

i-I0

11-20

21-30

31-40

41-50

51-60

1-4

1-72

1-10

Code

RAD(1)

RAD(2)

5

etc. P6

O
1

0 6etc.

Y1

Z 1

Y2

Z 2

Y3

Z 3
etc.

WING

TIT LE

PNLE

Explanation

= 6. this cross section is given by a

set of Y, Z pairs (on cards 9D).

Radius of section if SCODE = 2. or 4..

Horizontal semi-axis if SCODE = 3..

Not used otherwise.

Vertical semi-axis, if SCODE = 3..
Not used otherwise.

A set of body radii P if SCODE : 1. or
5.. There must be BTItETA _< 16

values of P.

A set of O if SCODE =4. or 5.. There

must be BTHETA _< 16 values of 0.

Array of Y, Z coordinate pairs if

SCODE = 6..

Columns 1-4 contain the word WING.

This card is used whenever a wing is

defined• For the case of a body alone,

omit cards 10D through 19D. After

reading a WING card, the program

expects wing definition data.

Any desired title.

Number of corner or break points de-

fining the planform leading edge (see
page 102).
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Card 13D

Card(s) 14D

Card(s) 15D

Column

11-20

21-30

31-40

41-50

51-60

1-10

11-20

21-30

1-10

11-20

21-30

31-40

41-50

51-60

etc.

1-10

11-20

21-30

31-40

41-50

Code

PNTE

AFN

PLN

WUL

CHD

PCODE

ACODE

EPS

X 1

Y1

X 2

Y2

X 3

Y3

Xl

Y1

X 2

Y2

X 3

Explanation

Number of corner or break points de-

fining the planform trailing edge.

Number of planform control chords.

AFN >_ 2., including the wing-tip
control chord.

Number of constant percent chord

lines used to form spanwise panel edges.

Wing leading and trailing edges are

counted in this number.

= 1.

Must be left blank.

=1.

=1.

Must be left blank.

Array of points defining the planform

leading edge, arranged in order from

inboard to outboard. There must be

PNLE point pairs; three coordinates

per card.

For wing-body combinations, X 1 and
Y1 must lie inside the body so that an
intersection can be calculated.

Array of points defining the planform

trailing edge, arranged in order from

inboard to outboard. There must be

PNTE point pairs; three coordinates

per card.

For wing-body combinations, X 1 and

Y1 must lie inside the body so that an
intersection can be caloulated.

116 "_



Column Code Explanation

51-60 Y3
etc.

Cards 16D Cards 16D and 17D always occur in pairs (unless AFNU = 0. on

card 16D) to define the wing control chord. There must be

AFN _2. pairs of 16D and 17D cards.

1-10 AFK Code to indicate how the control chord

is oriented on the planform. See

sketches below.

YL
_ Y

I
r_il CONTROL

CHORD

X2-"_ J

YT

i _-Y

CONTROL

CHORD

X X X
AFK= 1. AFK =2.

YL = YT

b,.i " Y
I ",&Xl CONTROL

ORD

X2

AFK = 3.

LEADING EDGEPOINT
DEFINES CONTROLCHORD

TRAILING EDGE POINT
DEFINES CONTROLCHORD

CONTROLCHORDDEFINED
BY BOTHLEADING AND
TRAILING EDGE POINTS

INTERNAL WINGCONTROLCHORDDEFINITION,/_'=-0

YL YT

"_"-...-...,iffql,,_ TIP CONTROL TIP CONTROL
-"CHORD 'CHORD

X X

YT YL

i _ _Y

o !
I !
! I

,,
TIP CONTROL

_CHORD

AFK = 1, AFK = 2. AFK = 3.

WINGTIP CONTROL CHORDDEFINITION,_] _ 0
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Column Code Explanation

Card(s) 17D

11-20

21-30

31-40

41-50

1-10

11-20

21-30

31-40

Card(s) 18D i-i0

51-60

BETA

YL

YT

AFNU

X o

Z o

X C

Z C

Pl

Two of the three quantities YL, YT, or
B must be given. AFK indicates the

appropriate pair.

The angle _, zero for all wing control

chords, except the wing tip (positive

as shown above). BETA is ignored if
AFK = 3..

Y-coordinate of the leading edge.

YL is ignored if AFK = 2..

Y-coordinate of the trailing edge.

YT is ignored if AFK = 1..

2. the height and true chord length

are specified on the following card
17D.

0. the previous 17D card values are

used. Card 17D should not follow if

AFNU = 0..

--0.

Z-coordinate at the leading edge of
control chord.

The control chord true length. If

Z O = Z C = 0, X C may be given an arbi-

trary length, which is then scaled by

the program to make X C equal to the
true chord length•

Z-coordinate of control chord at the

trailing edge.

Array of constant percent chord values

corresponding to the panel spanwise

edges• The leading-edge value Pl = 0..
There are PLN values required with the

last value (for the trailing edge) = 100.
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Card 19D

Card 20D

Card 21D

Card 22D

Column

1-3

1-10

11-20

1-5

1-6

Code

WBX

TDUMP

DEFEND

Explanation

Columns 1-3 contain the letters WBX.

This card indicates that a wing-body

intersection is desired. For wing

only or body alone cases, this card is

omitted.

1. linear interpolation used on body

station perimeters to compute addi-

tional points between meridian lines

in the wing intersection region. See

upper sketch on page 106, which

illustrates linear interpolation for

the wing intersection.

2. biquadratic interpolation used on

body station perimeters to compute

additional points between meridian

lines in the wing intersection region.

Dimensional intersection tolerance.

Specifies the accuracy desired in locat-

ing wing-body intersection points. A

value of 0.001 is suggested.

Columns 1-5 contain the letters TDUMP.

This card is included if a dump of geo-

metry definition and geometry transfor-

mation tapes is desired. See Appendix

C of Part II for a detailed description of

these tapes.

Columns 1-6 contain the word DEFEND.

This card ends the definition set and

must not be omitted.
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GEOMETRY PANELING CARD SET ]

All paneling data, except title cards and literal statements, are punched in

six-field, ten-digit format. A decimal point is required in each data field.

For body-alone case, cards 3P-14P are omitted.

For wing-alone case, cards 4P-7P are omitted.

Card 1P

Card 2P i-i0

Column Code

1-5 PANEL

11-20

21-30

Explanation

Columns 1-5 contain the word PANEL.

This is the first card in the paneling

link and must always follow the
DEFEND card.

The number of source control stations

at which the radius for an equivalent

body of circular cross section and the

actual body station centroid height are

computed. A maximum of 50 stations

may be requested. The radius at each
control station is used to determine the

source strength necessary to simulate

the body thickness. In wing-alone prob-
lem card 2P is blank.

Dimensional tolerance applied to the

additional points generated between

meridian lines on the perimeter of body

defining stations. This controls the

area and centroid location calculations.

A value of 0. 001 is suggested.

This field contains an interpolation

code. The program first determines

an equivalent radius, R, at each body

defining section, X, and then estab-

lishes an R vs. X array. Interpolation
for additional radii at other stations is

performed on this array. The same

technique is used to determine centroid

locations.
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Column Code Explanation

31-40

41-50

Card 3P 1-10 XPER

Card 4P

11-20 YPER

1-10 BODY PANEL

1. linear interpolation for equivalent
radii ml(1 centroid locations of the

source control stations that are be-

tween body defining stations.

2. biquadratic interpolation for

equivalent radii and centroid locations

at the source control stations that arc

between body defining stations.

1. linear interpolation between

meridian line points on the body
definition sections.

= 2. if biquadratic interpolation is
desired.

A dimensional tolerance value, E, such

that if any equivalent radius length or

centroid height, (z centroid), is less

than E, its value will be set equal to

zero. A value of 0. 001 is suggested.

Fraction of local streamwise panel

chord at which panel control point is

located. 0. <XPER < 1..

NOTE: XPER = .95 for all cases

discussed in this report.

Fraction of local panel width at which

panel control point is located.

0. < YPER < 1..

NOTE: YPER = 0. is a code used

to locate the panel control

point on the chord through the

panel centroid. YPER = 0.,
for all cases discussed in this

report.

Columns 1-10 contain the words BODY
PANE L.
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Card 5P

Column

1-10

11-20

21-30

Card(s) 6P i-i0

51-60

Card(s) 7P i-i0

51-60

Card 8P i-i0

Card 9P 1-10

*(PLNB + PLNW) <_ 21

Code

PLNB*

PLNW*

TOLB

XCEPTB 1

XCEPTB 6
etc.

C ODE BW 1

COD E BW 6
etc.

WING PANEL

PLANE

Explanation

Number of transverse body panel edges

aft of wing trailing edge-body inter-

section _ 21. See upper sketch on

page 108. If PLNB = 0., omit card 6P.

Number of transverse body panel edges

within the wing body intersection

region _ 16.

Slope tolerance on body secondary panel

part leading edges. Panel parts with

slopes < _ = TOLB (in the local)

panel coordinate system) are eliminated.

TOLB = 0.02 is suggested•

x-values of transverse body panel edges

aft of the wing trailing edge- body
intersection. There are PLNB values.

Omit this card(s) if PLNB = 0.

Each field contains an integer identify-

ing those spanwise wing panel edges

which continue around the body to form

transverse body panel edges at the body

intersection• The table must always

start with the integer 1 and terminate

with the wing trailing-edge number•

See upper sketch on page 108. There
are PLNW values.

Columns 1-10 contain the words WING

PANEL.

Number of buttock lines which locate

the streamwise wing panel edges speci-

fied by cards 10P and llP.

Wing-alone problem: PLANE is the
number of buttock lines locating the

streamwise panel edges including both

the wing tip and centerline.
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Column Code Explanation

_Wing-body prol)lem: PLANE is the

number of buttock lines locating the

streamwise panel edges, but does not

include the inboard edge located by the

program at the wing-body intersection.
PLANE _> 2.. See sketches below.

_-,_ (3)

1 ',ERO-LENGTH RAKED
WINGCONTROL WINGCONTROL

X CHORD CHORD

(1) (2) (3) (4) (5) (6)

\ :!-¥,

X

PLANE: 4, PLANE'6,

11-20

21-30

OPTF

SNUM

1. upper and lower airfoil ordinates

are read in (cards 12P and 13P) at

each wing buttock line passing

through the panel centroids. If the

wing is untwisted and has the same

airfoil section from root to tip, only

one airfoil table is necessary. The

program will scale this table to fit

the appropriate chord.

= 0. no tables are read in and the wing

is a flat plate at zero incidence.

Number of given airfoil ordinate tables.

= 0., OPTF = 0.
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Card(s) lOP

Card llP

Column

31-40

i-I0

51-60

etc.

i-I0

Code

TOLW

YCEPT I

YCEPT 6

CPNT

Explanation

--- 1. , same airfoil section from wing

root to tip.

= (PLANE - 1), wing alone case airfoils

specified.

= PLANE, wing-body case airfoils

specified•

Slope tolerance on wing secondary panel

part leading edges. Panel parts with

slopes _ -_ = TOLW are elimi-

nated. TOLW = 0.01 is suggested.

Wing buttock line values at which

streamwise panel edges are specified.

There are (PLANE -1) values. The tip
edge is specified on card llP.

NOT E: This card controls the outboard

panel edge and in no way influ-

ences the spanwise edges which

are established by the geometry

definition (see page 103). The

outboard panel edge is usually
made coincident with the defini-

tion wing tip, but it may be used

to truncate the defined wing tip

and the spanwise panel edges

anywhere between the two out-

board wing buttock lines speci-

fied by card 9P. If truncation

is specified, the wing span
and area are reduced•

Code indicating how the most outboard

panel edge or wing tip is specified.

0. X and Y coordinates of the wing

tip leading and trailing edge are

given. Use VALUE(l) through (4).
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Column Code Explanation

1. X and Y coordinates of the leading

edge and the slope (_X/AY) of the

wing tip are given. Use VALUE(l),

(2) and (5).

2. X and Y coordinates of the trailing

edge and the slope (AX/AY) of the

wing tip are given. Use VALUE(3),

(4) and (5).

11-20 VALUE (1) X-coordinate of wing tip leading edge if

CPNT = 0. or 1..

21-30 VALUE(2) Y-coordinate of wing tip leading edge if

CPNT = 0. or 1..

31-40 VALUE(3) X-coordinate of wing tip trailing edge

if CPNT = 0. or 2..

41-50 VALUE(4)

51-60 VALUE(5)

Y-coordinate of wing tip trailing edge

if C1)NT = 0. or 2..

5X
wing tip slope, _-_, if CPNT = 1. or 2..

Cards 12P and 13P give the SNUM sets of airfoil coordinates.

These card sets (12P and 13P) are always used in pairs to define

each airfoil at a given panel centroid buttock line. The card sets
are omitted if OPTF = 0..

Cards 121 )

First

Card

Second

Cards

1 - 10 XNUM (1)

1-10 XFOIL 1

11-20 ZFOIL 1
+

41-50 XFOIL 3

51-60 Z FOIL 3
etc.

Number of points (X, Z coordinate

pairs) in upper surface airfoil ordinate

table. 4. _ XNUM(1) _ 25..

Upper surface airfoil ordinate table.

Local X and Z coordinates are given

from leading edge to trailing edge. If

the wing has no twist, an unscaled set

of ordinates may be given and the pro-

gram will scale the airfoil to the local
chord.
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Column Code Explanation

Cards 13P

First

Card

Second

Cards

Card 14P

1-10

i-i0

11-20

41-50

51-60

1-6

XNUM(2)

XFOIL 1

Z FOIL 1

XFOIL 3

ZFOIL 3
etc.

PANEND

Number of points ( x, z coordinate

pairs) in lower surface airfoil ordinate

table, 4._ XNUM(2) _ 25..

Lower surface airfoil ordinate table.

Columns 1-6 contain the word PANEND.

This card ends the paneling set and

must be used whenever any paneling is

performed. It is not needed for a body-

alone problem,
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I AERODYNAMIC CARD SET I

All aerodynamic data, except title cards and literal statements, are punched

in seven-field, ten-digit format. A decimal point is required in each data field.

Data cards 1A and 2A are input only once for a given configuration and Mach

number. The remaining aerodynamic data cards may be repeated as necessary

to solve the selected aerodynamic cases.

Card 1A

Card 2A

Column Code

1-11 AERODYNAMIC

1-10 XMACH

11-2 0 SYM

Card 3A 1-72 TITLE

Card 4A 1-10 CASE
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Explanation

Columns 1-11 contain the word AERO-

DYNAMIC.

Mach number.

0. the aerodynamic problem solved

is unsymmetric about the vertical

X-Z plane (image panels not included,

see page 49).

1. the aerodynamic problem solved

is symmetric about the vertical X-Z

plane (image panels included, see

page 49).

Any desired title.

1. calculates wing twist and camber

for a given A Cp distribution on wing
where

A Cp = Cp lower - Cp upper

2. calculates pressure distribution

over the configuration. Wing and

body camber can be changed within

this option.

3. optimizes wing twist and camber

for minimum drag.

NOTE: For body-alone problems, only

case = 2. option is available.



Column Code Explanation

Card 5A

Card(s) 6A

11-20 CPCALC = 0. Cp calculations use linear equation;

Cp = -2u.

21-30 POLAR

= 1. C_ calculations use nonlinear

equation;

Bu 2 2 2Cp = -2u + - v - w .

= 0. drag polar not requested.

1. drag polar requested. A series of

incremental angles of attack is spe-

cified on cards 10A.

31-40 THICK = 0. wing thickness pressures are not
calculated.

= 1. wing thickness pressures are

calculated.

41-50 VOUT = 0. the velocity components are not

printed.

= 1. the velocity components are

printed.

1-10 RFAREA Half-wing reference area. If this field

is left blank, the program sums the

wing panel areas to obtain the reference

area which is the half wing exposed

area. For the body-alone problem, a

value must be input, or a unit area is

used.

11-20 XP x-coordinate about which the pitching

moments are computed.

21-30 Zl a z-coordinate about which the pitching
moments are computed.

For configurations that include a body, two options are available

for specifying body camber. The first word on the first card is

the key to the type of input the program expects. Omit this card

set for wing-alone problems.
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Column Code Explanation

Card(s) 7A

1-5

7 -80

1-80

GIVEN

Any addi-
tional

identifying

symbols

Any

identifying

symbols

Option A
Columns 1-5 contain the word GIVEN•

The program takes the body camber to

be that calculated in the geometry defi-

nition section. No additional cards arc

necessary for this option.

Option B

The first card contains any arbitrary

identifying symbols (other than GIVEN

or CONSTANT as the first word) to

describe the body camber and the pro-

gram expects additional cards immedi-

ately following to specify the body

camber.

i-i0 z 1

61-7 0 z7
etc.

z-values or cross-section centroid

heights for Option B giving the body

camber at the x-locations of the source

control stations (see Card 2P). To
determine the exact source control

stations, it is necessary to have pre-

viously run the configuration through

the geometry sections of this program.

Calculates wing twist and camber for a given wing AC_ distribution

(CASE = 1., field 1 of card 4A). Two options are available for spe-

cifying the ACp distribution. These options are selected by the
first word on the first card of this set. Omit this set for body-

alone problems or CASE = 2. or 3..

1-8

9-80

CONSTANT

Any addi-

tional

identifying

symbols

Option A
Columns 1-8 contain the word CON-

STANT. This option restricts the wing

to have a constant ACp distribution.
This constant value is specified on the

following card.

i-I0 A Cp A Cp for Option A.
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Column Code Explanation

Card(s) 8A

1-80 Any

identifying

symbols

1-10 _.Cpl

61-7 0 _Cp7
etc.

Option B

The first card contains any appropriate

identifying symbols (other than GIVEN

or CONSTANT as the first word) to

select Option B. A Cp for each panel is
specified on the following card set.

A CpVS for Option B. This array must
be ordered starting with the inboard

panel at the leading edge and running

aft to the trailing edge, then proceeding

outboard to the tip in the same manner.

Calculates the pressure distribution over the configuration (CASE =

2., field 1 of card 4A). Three options are available for specifying

the camber shape of the wing. The options are selected by the first

word on the first card of this set. Omit this set for body-alone

problems or CASE = 1o or 3..

1-8

9-80

CONSTANT

Any addi-

tional

identifying

symbols

Option A
Columns 1-8 contain the word CON-

STANT. This option restricts the wing

camber shape to have a constant slope

for each wing panel. This constant

value is specified on the following card.

1-10 _z/Ax Az/Ax for Option A.

1-5

7 -80

GIVEN

Any addi-

tional

identifying

symbols

Option B

The wing camber shape is specified by

the input geometry. The panel slopes

are read internally from a tape gener-

ated in the paneling section of the pro-

gram. In this case, no additional cards

are necessary.

1-80 Any

identifying

symbols

Option C

Any appropriate identifying symbols

(other than GIVEN or CONSTANT as the

first word) on the first card of this set

are used to select this option. The wing

camber shape is specified by a slope for

each panel. Additional cards must be

input which contain the slope values.
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Column Code Explanation

Card 9A

Card(s) 10A

I-i0 AZl/AX 1

61-70 Az7/A x 7
etc.

Wing panel slopes for Option C. The

array must be ordered starting with the

inboard panel at the leading edge and

running aft to the trailing edge, then

proceeding outboard to the tip in the

same manner.

Optimizes wing twist and camber for minimum drag (CASE = 3.,

field 1 of card 4A). Tw__oooptions are available• The first option

optimizes the wing for a given wing lift constraint and the second

option optimizes the wing for both the wing lift and center of pres-

sure constraints. Only one data card is required. Omit this card

for a body-alone problem or CASE = 1. or 2..

1-10 CONSNT = 0. the wing is optimized for minimum

drag with a wing lift constraint.

1. the wing is optimized for minimum

drag with both wing lift and x-coordi-

nate of the center of pressure
constraints.

11-20 C LBAR Wing lift coefficient constraint.

21-30 XCPBAR The x-coordinate of the wing center of

pressure constraint. If the center of

pressure is not constrained, omit this
field•

When the drag polar option is selected (POLAR = 1., field 3 of

card 4A), the values of incremental angles of attack added to the

immediately preceding case of the defined configuration are given

here. These values in degrees are specified in columns 1-10, one

value per card for as many cards as necessary. The angle of

attack series will be terminated by a blank card. Omit these cards

if the polar option is not selected (POLAR = 0.).

NOTE: Additional aerodynamic cases may be requested by return-

ing to card 3A or the aerodynamic cases for this configura-

tion and Mach number may be terminated by proceeding to

cards llA (see figure 24 page 112).
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Column Code Explanation

Cards llA

Terminal

Card

Two blank cards must be placed behind the last data card of each

problem, to terminate the selected aerodynamic cases for a given

configuration and Mach number.

Additional problems (new configurations or Mach numbers) may be

stacked consecutively each starting with card 1D°

Finally, a data card with the words END OF DATA punched in
columns 1-11 will terminate the run.

132



5.4 SampleInput Formats

Program card input formats for three types of geometric configurations with

successive aerodynamic cases are presented on the following pages:

Body alone; pages 134-135

Wing alone; pages 137_-143

Wing-body combination; pages 145-149

Body alone, m A parabolic body of revolution with a fineness ratio of 11 is

defined by 21 body stations. Ten equally spaced meridian lines are constructed.

Because each body station is circular, only one radius per station is given and

code 2. (on cards 6D, column 31) is used. On card 2P, 50 equally-spaced

source control stations are requested. Although no body paneling is required,

two panel cards (1P and 2P) are necessary to define the number of source sta-

tions and the method by which the equivalent body radii at the source stations are

interpolated.

The two aerodynamic cases specified for the parabolic body are for CASE =

2. (card 4A), that is, calculations of pressure distribution over the given configu-

ration. Both linear and nonlinear Cp calculations are requested for two angles of

attack (_ = 0 degrees, is given automatically, _ _ = 5 degrees is specified).

Body camber is zero as given by the geometry description.

133



0
LL

s,,,.J

I-,-

m

:z
L,J

I,,-,.

I,.i,.

Z
I,i,il

>
I.U

-- 4

,-.4

0 0
". ". ,. o_ .. ,. ,, ._ .. ,. , . _ , , , , _.__. _ , _ c_

©

134



.,o

In

0

im
m

c_
i

a

u,.,I

m

u,_

z
I,,I,I

o

i,i

0

0

r3

q-I

!

r_

de d

|

r_

135



Wing alone. --The input for a cambered and twisted arrow wing with thick-

ness is shown on the following pages. The wing planform is defined by four

points, two on the leading edge and two on the trailing edge (cards 14D, and 15D).

Two points are coincident at the tip. Two control chords are given on cards

16D through 17D. The eleven constant-percent chord lines that form span-

wise panel edges are specified on cards 18D. Wing buttock lines

forming the ten streamwise panel edges are specified on cards 10P

and llP. A total of 100 wing panels are formed as shown in figure 26 (page 156).

The remaining cards in the paneling set are airfoil ordinate tables, one table for

each of the ten streamwise columns of panels. Each table specifies the thickness,

camber, and twist by giving upper and lower airfoil ordinates along wing buttock

lines through the spanwise centroid of each streamwise column of panels. Ex-

amples of three aerodynamic cases are given for this configuration. The first

example illustrates the input card set for CASE = 1. (card 4A), calculation of

wing twist and camber for constant pressure distribution, CL = • 1. An additional

angle of attack of 5.73 degrees (0.1 radian) is also specified. The second exam-

ple shows the input card set for CASE = 2., calculation of pressure distribution

over a given configuration. Pressure distributions are determined at ¢v = 0

degrees, -2 degrees, 2 degrees, 6 degrees. The last example shows the input

card set for CASE = 3., wing optimization. A constraint of C L = . 1 is specified;

pressures and wing shape are determined for a = 0 degrees and 5.73 degrees

(0.1 radian). All the above aerodynamic cases specify linear Cp calculations.
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Wing-body combination. --The card input format for a Boeing wing-body

configuration is shown on the following pages. The configuration has a constant-

chord swept wing, mounted below the axis of a cambered body of circular cross

section. Section 6.4 describes the configuration and paneling scheme.

Along the X-axis, 24 body stations are specified. No body camber is speci-

fied in the definition card set. Eight meridian lines are requested. The 0 array

is specified so that a meridian line (_ = 102.19 degrees) coincides with the wing

plane. The wing planform is defined by four points and four control chords.

Cards 16D and 17D contain the four chords which locate the wing 0.25

inch below the X-Y plane. Eleven equally spaced constant percent chord lines

are specified on the wing. Card 3P locates the panel control points at 0.95 of the

local streamwise panel chords through the panel centroids. Four transverse

body panel edges aft of the wing trailing edge are located at body stations 25, 27,

29.5, and 32.415. There are no body panels aft of station 32.415.

The wing is divided into 100 panels. Wing buttock lines defining streamwise

panel edges outboard of the wing-body intersection are specified on cards 10P

The nonstreamwise wing tip edge is specified on card llP. Only

one airfoil ordinate table is given since the wing has no twist or change in camber.

Two aerodynamic cases are specified. The first case shows the input card

set required to calculate the nonlinear pressure coefficients over the wing and

body at _ = 0, 2, 3, 4, and 5 degrees. Body camber is specified on cards 6A

at each of 50 source control stations. The x-locations of the source

control stations are determined by first rtmning the geometry definition and panel-

ing sections of the program. (To do this, the PANEND card is immediately

followed by the END OF DATA card, and all aerodynamic cards are omitted. )

All force and moment coefficients are based on the half-wing area of 89.37 5 in. 2,

as specified on card 5A.

The second case considered shows the input card set required to optimize the

wing for minimum drag at a wing C L of 0.1 degrees and Mach 1.8. Body camber
I

is again specified. The END OF DATA card terminates the input. Discussion of

results obtained for the Boeing wing-body configuration from a similar set of in-

put cards is contained in section 6.4.
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6. EXPERIMENTAL VERIFICATION

Four comparisons of experimental data with computed data are presented

and discussed. The first comparison, given in section 6.1 is for a parabolic

body. Section 6.2 discusses two arrow wings, one with camber and thickness

and one with thickness only. Pressure distributions at three angles of attack

are compared for each wing. Finally, two constant-chord, wing-body config-

urations are considered in sections 6.3 and 6.4. One configuration has an un-

swept wing, while the second has wing leading edges swept behind the Mach cone.

Body and wing pressure distributions for both configurations are compared.

6.1 Body Alone

Wind-tunnel pressure data for a body of revolution with a parabolic profile

are published in reference 16. The fineness ratio of the body is 11. The pres-

sure coefficients measured on the body at Mach 1.93 for zero incidence are

presented in the lower half of figure 25, and compared with pressure coefficients

calculated by the nonlinear formulae given by equation (102). The longitudinal

pressure distribution for zero angle of attack agrees very closely with the

wind-tunnel data.

The circumferential pressure distributions predicted by the method using

the nonlinear pressure coefficient formula for the lifting case ( _ = 5 degrees)

do nbt follow the experimental data closely. However, they exhibit similar

trends and show comparable Cp levels. The shape of the circumferential pres-

sure curve at x/L --. 13 predicted by the linear Cp formula shows the better

trend, although the level is too high. A hybrid theory, similar to that suggested

by Van Dyke in reference 17 can be used to improve the agreement on the body

ahead of the maximum diameter. The hybrid theory proposes the use of the

nonlinear pressure coefficient formula given by equation (102) to estimate the

pressure due to body thickness, and the linear pressure coefficient formula

given by equation (105) to estimate the additional pressure due to camber and

incidence. The effect of the hybrid theory is to shift the linear pressure curve
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toward the nonlinear curve along the Cp axis. Use of thistechnique on the body

behind the maximum diameter does not result in an improvement of pressure

curve shapes or levels in this example.
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6.2 Wing Alone

Two arrow wings of identical pla__form were analyzed. A complete tabula-

tion of the experimental data for both wings is presented in reference 18. Both

wings have a 3-percent biconvex symmetrical thickness distribution. Wing 1 has

no camber or twist. Wing 2 is cambered and twisted to give theoretical minimum

drag at a design C L of 0.08 for a given leading edge pressure constraint. Com-

parison of experimental and theoretical data is made at Mach 2.05 and presented

at five spanwise stations for three angles of attack. Figure 26 shows the plan-

form and the 100-panel layout for both wings. The paneling was chosen so that

the spanwise locations of the calculated pressures corresponded to the pressure

taps on the test wings.

The unsmoothed theoretical pressure coefficient data shown in figure 27 for

{x = 0 degrees are a direct point-to-point pilot of the program output for Wing 1.

A distinct oscillation in the calculated Cp is apparent near the tip. Since this

wing has no camber, the pressure coefficients at a = 0 degrees are due to air-

foil thickness alone. The use of source singularities to represent wing thickness

results in chordwise pressure oscillations in regions where spanwise panel edges

have the same slope, or nearly the same slope, as the Mach line. The oscilla-
+

tions are amplified in the tip region of planforms having pointed tips and subsonic

lead_g edges. A good representation of the chordwise pressure distribution can

be provided by fairing through the end points of the oscillation. This type of

fairing has been applied to all the arrow wing chordwise pressure plots and is

presented as the smoothed theoretical data.

Agreement between the smoothed theoretical data and experimental data is

good, except near the tip, for both wings at low and moderate angles of attack.

At higher angles of attack the experimental pressure distributions show a distinct

change in pattern and no longer agree with linear theory predictions. This is

probably associated with an overexpansion of the flow on the upper surface,
J

followed by the formation of a shock wave and vortex.
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Satisfactory prediction of lift curves and drag polar shapes is illustrated by

the Wing 2 comparison shown below:

, DEG

4

2

0

-2

-4
-.08

o/
O/ .048

07 .040
.032

Oy CD .024

O WINDTUNNEL DATA .016,

THEORY

,008

: :" ' • : 0

0 .08 .16 .24 .32 -.08

/
: : _" $ :

0 .08 .16 .24 .32

CL CL

O WINDTUNNEL
PRESSUREDATA

_THEORY

The pressure distributions predicted by the program also agree well with

the linear theory calculations presented in reference 18.
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PANEL LAYOUT USEDFOR
PRESSUREDISTRIBUTION
COMPARISON
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.546

1.638

4r.875
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3.28
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3.822
PRESSURETAP

LOCATIONS
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8.189

9.28

10.919

FIGURE 26 ARROWWINGPLANFORM AND PANELING DESCRIPTION
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6.3 Nielsen Wing Body

A classical experiment in wing-body interference was reported by Nielsen

in reference 15. The configuration tested was a circular body of revolution with

an ogival nose and an unswept, constant-chord wing with a 10-percent thick

wedge-shaped airfoil. Model dimensions and configuration paneling are shown

in figure 29. The model was equipped with apparatus to permit changing the

wing incidence relative to the body axis. Data comparisons are made for the

wing at incidence to the body, and for the wing and body at the same angle of

attack. Only the incremental pressure coefficients above the values obtained for

the wing and body at zero incidence are shown.

For this analysis, the wing is assumed to have no thickness. The half-wing

planform is divided into one hundred equal-area panels as shown in figure 29.

The half-body region aft of the wing leading edge is represented by six equal

longitudinal strips of fourteen panels each. The calculated pressure distributions

at Mach 1.48 are presented in figures 30 through 33 at five spanwise wing sta-

tions and for three body meridians. In figure 30, the calculated pressure distri-

butions are compared with Nielsen's theoretical predictions and the experimental

data for awing = 1.92 degrees; the body incidence is zero for this example.

Both theoretical results for wing pressures agree well, except in the region en-

closed by the Mach cone from the tip, y/r = 3.92, where the present theory tends

to smooth out the pressure discontinuity. However, the program data does show

acceptable agreement with the experimental data. The present theory for body

pressures does not agree closely with Nielsen's predictions but does show excel-

lent agreement with the wind-tunnel data.

Figures 32 and 33 show pressure data comparisons for the wing and body at

the same angle of attack. The Mach number is 1.48 and the experimental data is

for e, wing = _ body = 2 degrees. Bott theories again show agreement, except

on the body, where the pressures calcu ated by the program show closer correla-

tion to the experimental data.

The wind-tunnel test Reynolds number for both cases above is 1.5 million.
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FIGURE 29 NIELSEN'S WINGBODY CONFIGURATIONANDPANELING SCHEME
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6.4 Boeing Wing-Body

The wind-tunnel test model is a constant-chord, swept-wing configuration

with a cambered cylindrical body. Model dimensions and pressure tap locations

are given in figure 34. The body has a drooped nose mid a small amount of boat

tailing. Four streamwise rows of pressure taps are located on the upper and

lower wing surfaces. The wing chord plane intersects the body side 0.25 inch

below the body axis and has no incidence relative to the body. Five longitudinal

rows of pressure taps are located on the body. The wing, with a 12-percent-

thick airfoil oriented normal to the leading edge, is pretwisted to give a flat shape

when aerodynamically loaded to a design C L of 0.15 at Mach 1.8. Photographs

in figure 36 show that the wing did achieve an untwisted shape at a 4-degree angle

of attack. It is this untwisted wing with camber that is analyzed by the program.

The wing half-planform is represented by 100 panels spaced as shown in

figure 37 on page 170 to obtain pressure coefficients at spanwise stations corres-

ponding to wing pressure tap locations. The body aft of the wing leading edge is

represented by 98 panels, 14 in each of 7 longitudinal strips.

Comparisons of wind tunnel and calculated wing and body pressure data are

shown in figures 37 and 38. The Mach number is 1.8 and the comparison is for

ry = 4 degrees. Wing pressure predictions are good for the inboard stations.

The experimental pressure distributions indicate the formation of a shock wave

on the upper wing surface near the root trailing edge, which extends outboard and

rearward across the span. Photographs of oil flow patterns taken during the wind-

tunnel test verify the formation and location of the shock wave. The rapid recom-

pression aft of the shock and subsequent flow separation are not well represented

by the linear theory calculations.

Pressures calculated on the surface of the body, shown in figure 38, exhibit

good agreement with wind-tunnel data. The body pressures due to thickness are

calculated by the nonlinear pressure coefficient formula, equation (102). The

wing pressures and pressures on the body due to the wing are predicted by the

linear pressure coefficient formula, equation (105). The total body pressure
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distribution shown includes body thickness and wing interference effects. The

interference pressures due to the wing are added to the isolated body thickness

pressures in the region influenced by the wing.

The program input format for this wing-body configuration, paneled as

shown in figure 37, for nonlinear pressure calculations on wing and body, is

presented on pages 145 through 149 of section 5.4. This same wing-body con-

figuration, but with a different wing paneling scheme, was optimized for mini-

mum drag at a wing C L of 0.159. Discussion of the optimization follows in

section 7.0. The program input format for this latter case is contained in

Appendix C.
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WIND-OFF CONDITIONWITH THE TEST SECTION STING
PITCHED TO 4° ANGLE OF ATTACK. THE BUILT-IN
DOWNWARDDEFLECTION OF THE WING IS READILY
APPARENT.

FIGURE 36

WIND-ON CONDITIONFOR a =4 ° and M-- 1.8. THE

WINGIS AT DESIGNCL AND HAS DEFLECTED INTO A
FLAT SHAPE UNDERTHE AERODYNAMIC LOAD.

COMPARISONOF WINGSHAPE WITH AND WITHOUTAIRLOAD
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7. THEORETICAL OPTIMIZATION

The wing camber surface of the Boeing wing-body configuration, as desc_'ibed

in the previous section, was optimized for minimum drag with constrained liit.

Some graphical comparisons with the untwisted case are shown in figure 39, and

a complete input-output tabulation is presented in Appendix C. The paneling

chosen for this case was uniformly spaced both spanwise and chordwise on the

wing. This paneling scheme differed slightly from that used in the example pre-

sented in section 6.4; in which the panels were chosen to coincide with the

pressure tap locations. Both paneling schemes are illustrated on figure 40, page

1S9. Uniform panel spacing tends to minimize any undesirable oscillations in the

wing geometry or pressure distributions, in wing optimization calculations.

At the wind-tunnel model design angle of attack of 4 degrees and Mach 1.8,

the wing lift coefficient (based on the exposed wing) was 0. 159. The optimized

wing lift coefficient was constrained to the same value, and the body was kept at

the same angle of attack. No constraint was placed on the center of pressure.

The optimized wing camber surface reduced the wing drag by 19 percent (from

0. 00936 to 0. 00761) and the total configuration drag by 23 percent (from 0. 01101

to 0. 00849). A greater load was carried by the wing root, improving the span-

wise lift distribution. The additional body load increased the total lift and

reduced the negative pitching moment.

The additional load on the body due to the wing is shown by the top and bottom

meridian pressure distributions in figure 39. Changes in the body interference

pressures are larger toward the wing-body junction leading edge, where the

major change occurred in the wing root pressure distribution. The chordwise

pressure distributions on the wing show the effect of the optunized camber sur-

face. Wing thickness effects are unchanged. In general the maximum camber

location was moved more toward the trailing edge. Viscous limitations on the

pressure gradients at the trailing edge would probably make some of the camber

revision impractical.
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Althoug'h the details of the _)l)timize(I winl4 gt'c,metl'y :ire n,,t shown in lit4_rc

39, the tabular panel sl()l)t, data art, givenin Al}l)en, lix C. The,,i,timizati,,n shows an

incl't':lst' ili wing int, itlt,|lt, t, :ll the r_ot an(I a (le(.l't,:ls(_ ill the int',i(ience (,l the next-

to-last st)anwise stati()n near lh_.. highly l()a(le(I winl4 til_. A(hliticmal line IJ:tn(qini4

in e:leh of these al'eas t'()tlhl 14ivt' more detail ()1 tht' (_l)Limtlm le,e(mletl'y.
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8. CONCLUSIONS

A digital computer program for calculating wing-body interference problems

in supersonic flow has been developed. The program is based on the method of

aerodynamic influence coefficients. A special effort has been made to reduce

the number of geometric description inputs, and has significantly increased the

practical value of the program.

A wide variety of aerodynamic problems involving wings, bodies, or wing-

body combinations can be solved. The program may be used to determine the

pressures, forces, and moments on given configurations; or to determine the

wing camber surface corresponding to a given aerodynamic loading. In particu-

lar, the wing camber surface required to minimize the drag under given con-

straints of lift, or lift and pitching moment, may be calculated. The results of

the program have been compared with other theories and experiments, and show

good agreement in all cases.
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-- 9. APPENDIXES

9.1 Appendix A - Preliminary Results of Integration

In the solution of certain problems concerning the linearized theory of super-

sonic aerodynamics, several integrals of standard form occur repeatedly; their

evaluation can be carried out by elementary methods. Here is given a brief out-

line of the integration procedure and a summary of the results.

f
=/ d v

J1 J
(v 2 + e 2) _Ja2 v 2 + 2bv + c

j2=f vdv
(v 2 + e 2) _/a 2 v 2 + 2bv + c

Let the following substitution be made:

_b 2 - a c u 2 + 1 bv = a2 u 2 - i a

then

2a2 f (u2 - 1) d u

Jl _a (b2-ac)(u2+l)2-2b b_/_-ac(u4-1)+b2(u2-1)2+e 2 a2(u2-1) 2J

_/a 1

ei _/a2e2 . 2ab ei - ae

tan-1 [#b2 _ac - b + aei

-ae + b a el

1

U

ei _/a2e 2 -2ab ei-ac

tan-1 /_/_ -ac - b - a ei

V _/b2 ac + b + a ei

U

The above results can be simplified by the following consideration:

let tan_1 [_-ae -b + a
ei

- u=q+i_,

_]"_/b 2 ac + b a ei
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and

then 7 2 _ 52

_/ae2+ 2b ei - c = 7 + i6

= ae 2 - c and )' 6 = be_and 7 satisfies the equation:

Furthermore,

74 - (ae 2 - c) 72 -b 2 e 2 = 0.

J1-
ei _-a (7 + i5) ei _-a (7 - i6)

On the other hand, since

by 1 73
2or + - 2_

74 + b 2e 2 e _2 + b 2e 2

b_-ac - b+ae ! , there follows

tan (c_ + ifl) = b_ ac + b aei

tan 2(x + i tanh 2_

1 -i tan 2a tanh 2f] =

_/a v2 + 2bv+c (7 + i 5)

bv+c -i (b+av)e

Equating the real and the imaginary parts of the above equation, we get

(b v+ c) tan2a + (b+ av)etanh 2_ = _/av2 + 2b v+ c (7+ 6tan 2a tanh 2_)

(b v + c) tanh 2 _ - (b + a v)e tan 2 _ = _/a v 2 + 2b v + c (6 - 7 tan 2 o_ tanh 2 f3)

which gives the following solution for (_ and _:

1 7 2 bv
= _tan -1

y'_av 2+ 2by+ c

1 7_/av 2+ 2by+ c

(_ = 2tan-1 bv - 72

1 e_Jav2 + 2b v+ c
1 -1 v y + e6 ," _ = 2 tanh_ 1

= _-tanh e%/av2+2bv+c vy + e6

The above results for _ and _ can now be substituted for the expression

for J1, and, omitting the integration constant, we have

dvv 2+e 2)_/av 2+ 2bv+c

by

74 + b2e
tan -1

2
bv -7 2

7_/av 2 + 2b v+ c
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or

÷

3
1 7

e 3,4 + b2 e

/ 2
tanh_l e_a v + 2b v + c

2 v3,+e5

tan_ 1 _/'_a v 2 + 2b v + c

7 2 -bv

+
1 _,3 v)/ +e5tanh- 1
e 3,4+b 2e 2 _/av 2e +2bv+c

where _/ is a non-zero root of the equation:

3, 5 = be. For e = 0 then taking 7 =

7 4 - (ae 2 -c) 7 2 -b 2e

we obtain

2 _- 0 and

d v b tan-1
v 2 _/a v 2 + 25 v + c c_c--c

b v + e

_F_-c _/a v2 + 2by+ c

_/av 2+ 2by+ c

e v

or _ m m

c_/-c

tan-1 _/aV 2+ 2bv+c
-(bv+c)

_/av 2+ 2by+ c

e v

In a like manner, the integral for J2 can be evaluated:

f v d v 7 3 b v - y2y4+b 2e 2 tan-1
(v 2 +e 2)_/av 2+ 2bv+ c 7_/av 2+ 2by+ c

bey

y4 + b 2 e 2

tanh_ 1 e_/a v 2 + 2b v + c
vT+e5

or
_ 7 3

7 4 + b 2 e 2

bey

4 b 2 27 + e

where _/ and 6 are defined as before.

tan_ 1 :y _/a v 2 +2b v + e

_/2 -bv

tanh-1 v 7 + e 5

e_/a v2 + 2bv+ c
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9.2 Appendix B - Velocity Functions

Equations (58) and (59) in the text give expressions for the three velocity

components, u', v', w', at a point (x', y', z'), induced by a surface distribution

of singularities located in the plane z' = ax', and bounded by the x', y, plane

and the plane y' = rex'. The primed coordinate system has its origin at the apex

of this triangular region, with the x' axis parallel to the free stream.

Three velocity functions, P, S, and D, are defined by equation (59) in terms

of the variables a', b', _', y', and z', where

a' = f] a = _ tan (_

1 tan A

b'-- f3 m =-- _

=

and x r, y', and z r are given in equation (57).

At points for which _, > _/y,2 + z,2 , the functions P, S, and D may in turn

be expressed most simply in terms of seven auxiliary functions, F1 through F7,

as given in equation (37). These functions are rewritten below in terms of the

primed variables.

Z t -at_ tIz'-a' '/c°s-lt
F1

For

Fl=?r

= ?t/2

=0

 I(z

F2=

y' (b'y' - _') - a'(a'b'y' - z') + b'(z' - a' _,)2

,-a'_,)2+(l-a,2)y'2][(b,y'-_,)2+b'2(z'-a,_t)2-(a,b,y'-z,) 2]

Z ! = a t _t

for 0 < y' < _'/b'

for y' = O, _'/b'

for y' < O, y' > _'/b'

1 cosh-1

%/5'2(1 -a'2) - 1 _/(b'y' - _,)2

(1)

b'_' - y' - aq:)'z'

+ b'2(z '-a'_')2 _ (a'b'y'-z') 2

(2)

for b' > 1/%/_'_
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for b' = 1 I -

%/1 - 1)'2(1 - a '2)

-1
COS

b'_' - y' - a'b'z'

_/(b'y' - _,)2 _ b,2(z, - a' _,)2 - (a'b'y' - z')2

for b' < 1/_/1 - a '2

z'-a%'y' 1 - _'(y' _ a'b'z') + b'(y '2 + z '2)

F3 -iz , a_b,y,i cos- ,
_/(y,2 + z,2) (b'y' - _')2+b'2(z' -a'_') 2 - (a'b'y' -z') 2

For z' = a'b'y'

F3 y for

rt/2 for

= 0 for

0 < y' < _'/b'

y' = O, y' = _'/b'

y' < O, y' > _'/b'

For z' = y' = 0

F3 = F1 = - cos -1
a'b'

_/1 + a'2b '2

F4 = F3 - (i + a '2 b '2) FI

= - a'2 b'2 F3

F3 - (I + a '2 b '2) (FI + 2?7)

= -(1 + a '2 b '2) (F1 + r0

F5 = cosh -I _'

_]y,2 + z'2

F6 = %/1 - a '2 cosh -I

for y' < 0

for y' = 0

for y' > 0,

and a'b'y' < z' < a' _'

for y' > 0,

and a'b'y' = z' < a' _'

_t _ &tZt

_(z' - a' _,)2 + (1 - a '2) y,2

F7 = F5 - (i + a '2 b '2) F6

(3)

(4)

(5)

(6)

(7)
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For surface distributions of vorticity (constant pressure surfaces), the veloc-

ity functions may now be expressed in term s of these seven auxiliary functions,

as follows, provided _' > _y,2 + z,2 and a' > 0:

F1
p _ -- --

?r

a'b'[b'2(1 -a'2) - 1] F2 + b' F3 + F7/a'
S -

_r(1 + a T2b '2)
[ 1

D---lb'2( - a'2)- - b' +
rr(l + a '2b'2)

If a' = 0, the same expressions apply, except

Y' _ ,2 ,2)
F4/a,__y,2 + z '2 _ (y,2 + z

_' _/_,2 _ (y,2 + z,2)
F7/a'---'*'y,2 + z r2

If a' < 0, the velocity functions are the same as for a' > 0, except that a' is

replaced by -a', z' is replaced by -z', and D by -D. In addition, P = -P if

z = a'_', for a' < 0.

For _, < _/y,2 + z,2 , the functions P, S, and D are zero except within

the envelope of the Mach cones from the leading edge for the supersonic leading-

edge case (that is, b' < 1/_/1 - a '2 ).

In this case, for _' = b'(y' + a'b'z') + Iz' - a'b'y'I _i - 5'2(1 - a '2)

1 + a '2 b '2

P = ± _/2

2(1 + a '2 b '2) :F a' _/1 - b '2(1 - a '2)

D _ (± a'b'+ _/1-b'2(1-a'2))2{1 + a '2 b '2}

for

y, >__ _a'_/ -b '2
l+a' b '2 1 (1

or

y' <_ _'/b'

P = S = D = 0 for b'_'y' < 1 _a'_/1 -b'2(1 -a '2)
l+a' b '2

or y' > _'/b'
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and

For ¢,-. b'(y' _ a'b'z') _ z' - a'b'y' _/1 -b'2(1 -a'2)_
1 + a '2 1) '2

1 _ _t'2 b' 2 I :_ a' - b"_(l - a '2)

p : /3 for z' > a'¢'

:: - /g for z' <: a' ¢'

S - i - a' -
i + a '2 b '2

for z' > a'b'y'

fl (a,b, + _/i b,2(1-a'2))D 1+ a '2 b '2

1+ a '2b '2 1 + a'']l -b'2(1 -a '2)

for z' < a'b'y'

D = a,2 ,21 + b

S -- - _ a'b' _/1 -b'2(1 -a '2) /

1 + a T2 b _2 i for z' = a'b'y'

D - # $i - b'2(1 - a '2)
1 + a '2 b '2

The geometry of this case is illustrated in the sketch in the following page
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For surface distributions of sources, the velocity components are required

onlyfor the case a' = 0. Then, for _' > dy '2 + z '2

F2

1
S - o (b' F2 - F5)

?TP

For _' < 4y '2 + z '2 , the functions are all zero except within the envelope

of the Mach cones from the leading edge of the supersonic leading-edge case,

b'<l.

186



,nthisc_o,_or_,__b'y'+Iz'l

b r

2'fl - b '_

1D =i-
2

}
P = S = D = 0 for

For {' > b'y' + z'

and {'/b' > y, b' _,

y' _ b' (,, or y' > ¢'/b'

1

_1 - b 'Z

D=± 1

where the upper sign corresponds to z _> O.
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9.3 Appendix C - SampleWing-Body CasePrintout

A sample printout is given here for the wing optimization of the Boeing

wind-tunnel model described in section 6.4 A comparison between the planar

and optimized wing cases is presented in section 7.0.

The uniform panel layout used for this example is shown in the upper sketch

on figure 40.
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